Loading…
Modeling lidar returns from forest canopies
Remote sensing techniques that utilize light detection and ranging (lidar) provide unique data on canopy geometry and subcanopy topography. This type of information will lead to improved understanding of important structures and processes of Earth's vegetation cover. To understand the relation...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2000-11, Vol.38 (6), p.2617-2626 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c427t-a5404318ed0e59f346636b8480523a3b33dcf152a0e23281d7184c4670d5995b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-a5404318ed0e59f346636b8480523a3b33dcf152a0e23281d7184c4670d5995b3 |
container_end_page | 2626 |
container_issue | 6 |
container_start_page | 2617 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 38 |
creator | Sun, G. Ranson, K.J. |
description | Remote sensing techniques that utilize light detection and ranging (lidar) provide unique data on canopy geometry and subcanopy topography. This type of information will lead to improved understanding of important structures and processes of Earth's vegetation cover. To understand the relation between canopy structure and the lidar return waveform, a three-dimensional (3D) model was developed and implemented. Detailed field measurements and forest growth model simulations of forest stands were used to parameterize this vegetation lidar waveform model. In the model, the crown shape of trees determines the vertical distribution of plant material and the corresponding lidar waveforms. Preliminary comparisons of averaged waveforms from an airborne lidar and model simulations shows that the shape of the measured waveform was more similar to simulations using an ellipsoid or hemi-ellipsoid shape. The observed slower decay of the airborne lidar waveforms than the simulated waveforms may indicate the existence of the understories and may also suggest that higher order scattering from the upper canopy may contribute to the lidar signals. The lidar waveforms from stands simulated from a forest growth model show the dependence of the waveform on stand structure. |
doi_str_mv | 10.1109/36.885208 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_906526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>885208</ieee_id><sourcerecordid>2434535381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-a5404318ed0e59f346636b8480523a3b33dcf152a0e23281d7184c4670d5995b3</originalsourceid><addsrcrecordid>eNqN0T1PwzAQBmALgUQpDKxMEUgIhFLO3_aIKr6kIhaYLddxUKo0LnY78O9xSMXAAEwe_Pg93x1CxxgmGIO-pmKiFCegdtAIc65KEIztohFgLUqiNNlHByktADDjWI7Q1VOofNt0b0XbVDYW0a83sUtFHcOyqEP0aV0424VV49Mh2qttm_zR9hyj17vbl-lDOXu-f5zezErHiFyXljNgFCtfgee6pkwIKuaKKeCEWjqntHI15sSCJ5QoXEmsmGNCQsW15nM6RudD7iqG903-gVk2yfm2tZ0Pm2T6NhQo-Q9IlWBU_w0ll33tDC9-hVhITATmX_T0B12EPLo8GJM3AIJy2Re-HJCLIaXoa7OKzdLGD4PB9AszVJhhYdmebQNtcrato-1ck74faBCciKxOBtV4778vtxGfhRGYTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885063579</pqid></control><display><type>article</type><title>Modeling lidar returns from forest canopies</title><source>IEEE Xplore (Online service)</source><creator>Sun, G. ; Ranson, K.J.</creator><creatorcontrib>Sun, G. ; Ranson, K.J.</creatorcontrib><description>Remote sensing techniques that utilize light detection and ranging (lidar) provide unique data on canopy geometry and subcanopy topography. This type of information will lead to improved understanding of important structures and processes of Earth's vegetation cover. To understand the relation between canopy structure and the lidar return waveform, a three-dimensional (3D) model was developed and implemented. Detailed field measurements and forest growth model simulations of forest stands were used to parameterize this vegetation lidar waveform model. In the model, the crown shape of trees determines the vertical distribution of plant material and the corresponding lidar waveforms. Preliminary comparisons of averaged waveforms from an airborne lidar and model simulations shows that the shape of the measured waveform was more similar to simulations using an ellipsoid or hemi-ellipsoid shape. The observed slower decay of the airborne lidar waveforms than the simulated waveforms may indicate the existence of the understories and may also suggest that higher order scattering from the upper canopy may contribute to the lidar signals. The lidar waveforms from stands simulated from a forest growth model show the dependence of the waveform on stand structure.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/36.885208</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Animal, plant and microbial ecology ; Applied geophysics ; Atmospheric modeling ; Biological and medical sciences ; Canopies ; Computer simulation ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Forests ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Geometry ; Growth models ; Internal geophysics ; Laser radar ; Lidar ; Ray tracing ; Remote sensing ; Shape measurement ; Stands ; Sun ; Supports ; Surface emitting lasers ; Surface topography ; Teledetection and vegetation maps ; Vegetation ; Vegetation mapping ; Waveforms</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2000-11, Vol.38 (6), p.2617-2626</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-a5404318ed0e59f346636b8480523a3b33dcf152a0e23281d7184c4670d5995b3</citedby><cites>FETCH-LOGICAL-c427t-a5404318ed0e59f346636b8480523a3b33dcf152a0e23281d7184c4670d5995b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/885208$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=906526$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, G.</creatorcontrib><creatorcontrib>Ranson, K.J.</creatorcontrib><title>Modeling lidar returns from forest canopies</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Remote sensing techniques that utilize light detection and ranging (lidar) provide unique data on canopy geometry and subcanopy topography. This type of information will lead to improved understanding of important structures and processes of Earth's vegetation cover. To understand the relation between canopy structure and the lidar return waveform, a three-dimensional (3D) model was developed and implemented. Detailed field measurements and forest growth model simulations of forest stands were used to parameterize this vegetation lidar waveform model. In the model, the crown shape of trees determines the vertical distribution of plant material and the corresponding lidar waveforms. Preliminary comparisons of averaged waveforms from an airborne lidar and model simulations shows that the shape of the measured waveform was more similar to simulations using an ellipsoid or hemi-ellipsoid shape. The observed slower decay of the airborne lidar waveforms than the simulated waveforms may indicate the existence of the understories and may also suggest that higher order scattering from the upper canopy may contribute to the lidar signals. The lidar waveforms from stands simulated from a forest growth model show the dependence of the waveform on stand structure.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied geophysics</subject><subject>Atmospheric modeling</subject><subject>Biological and medical sciences</subject><subject>Canopies</subject><subject>Computer simulation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Forests</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Geometry</subject><subject>Growth models</subject><subject>Internal geophysics</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>Ray tracing</subject><subject>Remote sensing</subject><subject>Shape measurement</subject><subject>Stands</subject><subject>Sun</subject><subject>Supports</subject><subject>Surface emitting lasers</subject><subject>Surface topography</subject><subject>Teledetection and vegetation maps</subject><subject>Vegetation</subject><subject>Vegetation mapping</subject><subject>Waveforms</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqN0T1PwzAQBmALgUQpDKxMEUgIhFLO3_aIKr6kIhaYLddxUKo0LnY78O9xSMXAAEwe_Pg93x1CxxgmGIO-pmKiFCegdtAIc65KEIztohFgLUqiNNlHByktADDjWI7Q1VOofNt0b0XbVDYW0a83sUtFHcOyqEP0aV0424VV49Mh2qttm_zR9hyj17vbl-lDOXu-f5zezErHiFyXljNgFCtfgee6pkwIKuaKKeCEWjqntHI15sSCJ5QoXEmsmGNCQsW15nM6RudD7iqG903-gVk2yfm2tZ0Pm2T6NhQo-Q9IlWBU_w0ll33tDC9-hVhITATmX_T0B12EPLo8GJM3AIJy2Re-HJCLIaXoa7OKzdLGD4PB9AszVJhhYdmebQNtcrato-1ck74faBCciKxOBtV4778vtxGfhRGYTw</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Sun, G.</creator><creator>Ranson, K.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20001101</creationdate><title>Modeling lidar returns from forest canopies</title><author>Sun, G. ; Ranson, K.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-a5404318ed0e59f346636b8480523a3b33dcf152a0e23281d7184c4670d5995b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied geophysics</topic><topic>Atmospheric modeling</topic><topic>Biological and medical sciences</topic><topic>Canopies</topic><topic>Computer simulation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Forests</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Geometry</topic><topic>Growth models</topic><topic>Internal geophysics</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>Ray tracing</topic><topic>Remote sensing</topic><topic>Shape measurement</topic><topic>Stands</topic><topic>Sun</topic><topic>Supports</topic><topic>Surface emitting lasers</topic><topic>Surface topography</topic><topic>Teledetection and vegetation maps</topic><topic>Vegetation</topic><topic>Vegetation mapping</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, G.</creatorcontrib><creatorcontrib>Ranson, K.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, G.</au><au>Ranson, K.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling lidar returns from forest canopies</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2000-11-01</date><risdate>2000</risdate><volume>38</volume><issue>6</issue><spage>2617</spage><epage>2626</epage><pages>2617-2626</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Remote sensing techniques that utilize light detection and ranging (lidar) provide unique data on canopy geometry and subcanopy topography. This type of information will lead to improved understanding of important structures and processes of Earth's vegetation cover. To understand the relation between canopy structure and the lidar return waveform, a three-dimensional (3D) model was developed and implemented. Detailed field measurements and forest growth model simulations of forest stands were used to parameterize this vegetation lidar waveform model. In the model, the crown shape of trees determines the vertical distribution of plant material and the corresponding lidar waveforms. Preliminary comparisons of averaged waveforms from an airborne lidar and model simulations shows that the shape of the measured waveform was more similar to simulations using an ellipsoid or hemi-ellipsoid shape. The observed slower decay of the airborne lidar waveforms than the simulated waveforms may indicate the existence of the understories and may also suggest that higher order scattering from the upper canopy may contribute to the lidar signals. The lidar waveforms from stands simulated from a forest growth model show the dependence of the waveform on stand structure.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/36.885208</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2000-11, Vol.38 (6), p.2617-2626 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_pascalfrancis_primary_906526 |
source | IEEE Xplore (Online service) |
subjects | Animal, plant and microbial ecology Applied geophysics Atmospheric modeling Biological and medical sciences Canopies Computer simulation Earth sciences Earth, ocean, space Exact sciences and technology Forests Fundamental and applied biological sciences. Psychology General aspects. Techniques Geometry Growth models Internal geophysics Laser radar Lidar Ray tracing Remote sensing Shape measurement Stands Sun Supports Surface emitting lasers Surface topography Teledetection and vegetation maps Vegetation Vegetation mapping Waveforms |
title | Modeling lidar returns from forest canopies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A52%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20lidar%20returns%20from%20forest%20canopies&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Sun,%20G.&rft.date=2000-11-01&rft.volume=38&rft.issue=6&rft.spage=2617&rft.epage=2626&rft.pages=2617-2626&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/36.885208&rft_dat=%3Cproquest_pasca%3E2434535381%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-a5404318ed0e59f346636b8480523a3b33dcf152a0e23281d7184c4670d5995b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=885063579&rft_id=info:pmid/&rft_ieee_id=885208&rfr_iscdi=true |