Loading…

Modeling lidar returns from forest canopies

Remote sensing techniques that utilize light detection and ranging (lidar) provide unique data on canopy geometry and subcanopy topography. This type of information will lead to improved understanding of important structures and processes of Earth's vegetation cover. To understand the relation...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2000-11, Vol.38 (6), p.2617-2626
Main Authors: Sun, G., Ranson, K.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-a5404318ed0e59f346636b8480523a3b33dcf152a0e23281d7184c4670d5995b3
cites cdi_FETCH-LOGICAL-c427t-a5404318ed0e59f346636b8480523a3b33dcf152a0e23281d7184c4670d5995b3
container_end_page 2626
container_issue 6
container_start_page 2617
container_title IEEE transactions on geoscience and remote sensing
container_volume 38
creator Sun, G.
Ranson, K.J.
description Remote sensing techniques that utilize light detection and ranging (lidar) provide unique data on canopy geometry and subcanopy topography. This type of information will lead to improved understanding of important structures and processes of Earth's vegetation cover. To understand the relation between canopy structure and the lidar return waveform, a three-dimensional (3D) model was developed and implemented. Detailed field measurements and forest growth model simulations of forest stands were used to parameterize this vegetation lidar waveform model. In the model, the crown shape of trees determines the vertical distribution of plant material and the corresponding lidar waveforms. Preliminary comparisons of averaged waveforms from an airborne lidar and model simulations shows that the shape of the measured waveform was more similar to simulations using an ellipsoid or hemi-ellipsoid shape. The observed slower decay of the airborne lidar waveforms than the simulated waveforms may indicate the existence of the understories and may also suggest that higher order scattering from the upper canopy may contribute to the lidar signals. The lidar waveforms from stands simulated from a forest growth model show the dependence of the waveform on stand structure.
doi_str_mv 10.1109/36.885208
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_906526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>885208</ieee_id><sourcerecordid>2434535381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-a5404318ed0e59f346636b8480523a3b33dcf152a0e23281d7184c4670d5995b3</originalsourceid><addsrcrecordid>eNqN0T1PwzAQBmALgUQpDKxMEUgIhFLO3_aIKr6kIhaYLddxUKo0LnY78O9xSMXAAEwe_Pg93x1CxxgmGIO-pmKiFCegdtAIc65KEIztohFgLUqiNNlHByktADDjWI7Q1VOofNt0b0XbVDYW0a83sUtFHcOyqEP0aV0424VV49Mh2qttm_zR9hyj17vbl-lDOXu-f5zezErHiFyXljNgFCtfgee6pkwIKuaKKeCEWjqntHI15sSCJ5QoXEmsmGNCQsW15nM6RudD7iqG903-gVk2yfm2tZ0Pm2T6NhQo-Q9IlWBU_w0ll33tDC9-hVhITATmX_T0B12EPLo8GJM3AIJy2Re-HJCLIaXoa7OKzdLGD4PB9AszVJhhYdmebQNtcrato-1ck74faBCciKxOBtV4778vtxGfhRGYTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885063579</pqid></control><display><type>article</type><title>Modeling lidar returns from forest canopies</title><source>IEEE Xplore (Online service)</source><creator>Sun, G. ; Ranson, K.J.</creator><creatorcontrib>Sun, G. ; Ranson, K.J.</creatorcontrib><description>Remote sensing techniques that utilize light detection and ranging (lidar) provide unique data on canopy geometry and subcanopy topography. This type of information will lead to improved understanding of important structures and processes of Earth's vegetation cover. To understand the relation between canopy structure and the lidar return waveform, a three-dimensional (3D) model was developed and implemented. Detailed field measurements and forest growth model simulations of forest stands were used to parameterize this vegetation lidar waveform model. In the model, the crown shape of trees determines the vertical distribution of plant material and the corresponding lidar waveforms. Preliminary comparisons of averaged waveforms from an airborne lidar and model simulations shows that the shape of the measured waveform was more similar to simulations using an ellipsoid or hemi-ellipsoid shape. The observed slower decay of the airborne lidar waveforms than the simulated waveforms may indicate the existence of the understories and may also suggest that higher order scattering from the upper canopy may contribute to the lidar signals. The lidar waveforms from stands simulated from a forest growth model show the dependence of the waveform on stand structure.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/36.885208</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Animal, plant and microbial ecology ; Applied geophysics ; Atmospheric modeling ; Biological and medical sciences ; Canopies ; Computer simulation ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Forests ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Geometry ; Growth models ; Internal geophysics ; Laser radar ; Lidar ; Ray tracing ; Remote sensing ; Shape measurement ; Stands ; Sun ; Supports ; Surface emitting lasers ; Surface topography ; Teledetection and vegetation maps ; Vegetation ; Vegetation mapping ; Waveforms</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2000-11, Vol.38 (6), p.2617-2626</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-a5404318ed0e59f346636b8480523a3b33dcf152a0e23281d7184c4670d5995b3</citedby><cites>FETCH-LOGICAL-c427t-a5404318ed0e59f346636b8480523a3b33dcf152a0e23281d7184c4670d5995b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/885208$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=906526$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, G.</creatorcontrib><creatorcontrib>Ranson, K.J.</creatorcontrib><title>Modeling lidar returns from forest canopies</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Remote sensing techniques that utilize light detection and ranging (lidar) provide unique data on canopy geometry and subcanopy topography. This type of information will lead to improved understanding of important structures and processes of Earth's vegetation cover. To understand the relation between canopy structure and the lidar return waveform, a three-dimensional (3D) model was developed and implemented. Detailed field measurements and forest growth model simulations of forest stands were used to parameterize this vegetation lidar waveform model. In the model, the crown shape of trees determines the vertical distribution of plant material and the corresponding lidar waveforms. Preliminary comparisons of averaged waveforms from an airborne lidar and model simulations shows that the shape of the measured waveform was more similar to simulations using an ellipsoid or hemi-ellipsoid shape. The observed slower decay of the airborne lidar waveforms than the simulated waveforms may indicate the existence of the understories and may also suggest that higher order scattering from the upper canopy may contribute to the lidar signals. The lidar waveforms from stands simulated from a forest growth model show the dependence of the waveform on stand structure.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied geophysics</subject><subject>Atmospheric modeling</subject><subject>Biological and medical sciences</subject><subject>Canopies</subject><subject>Computer simulation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Forests</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Geometry</subject><subject>Growth models</subject><subject>Internal geophysics</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>Ray tracing</subject><subject>Remote sensing</subject><subject>Shape measurement</subject><subject>Stands</subject><subject>Sun</subject><subject>Supports</subject><subject>Surface emitting lasers</subject><subject>Surface topography</subject><subject>Teledetection and vegetation maps</subject><subject>Vegetation</subject><subject>Vegetation mapping</subject><subject>Waveforms</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqN0T1PwzAQBmALgUQpDKxMEUgIhFLO3_aIKr6kIhaYLddxUKo0LnY78O9xSMXAAEwe_Pg93x1CxxgmGIO-pmKiFCegdtAIc65KEIztohFgLUqiNNlHByktADDjWI7Q1VOofNt0b0XbVDYW0a83sUtFHcOyqEP0aV0424VV49Mh2qttm_zR9hyj17vbl-lDOXu-f5zezErHiFyXljNgFCtfgee6pkwIKuaKKeCEWjqntHI15sSCJ5QoXEmsmGNCQsW15nM6RudD7iqG903-gVk2yfm2tZ0Pm2T6NhQo-Q9IlWBU_w0ll33tDC9-hVhITATmX_T0B12EPLo8GJM3AIJy2Re-HJCLIaXoa7OKzdLGD4PB9AszVJhhYdmebQNtcrato-1ck74faBCciKxOBtV4778vtxGfhRGYTw</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Sun, G.</creator><creator>Ranson, K.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20001101</creationdate><title>Modeling lidar returns from forest canopies</title><author>Sun, G. ; Ranson, K.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-a5404318ed0e59f346636b8480523a3b33dcf152a0e23281d7184c4670d5995b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied geophysics</topic><topic>Atmospheric modeling</topic><topic>Biological and medical sciences</topic><topic>Canopies</topic><topic>Computer simulation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Forests</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Geometry</topic><topic>Growth models</topic><topic>Internal geophysics</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>Ray tracing</topic><topic>Remote sensing</topic><topic>Shape measurement</topic><topic>Stands</topic><topic>Sun</topic><topic>Supports</topic><topic>Surface emitting lasers</topic><topic>Surface topography</topic><topic>Teledetection and vegetation maps</topic><topic>Vegetation</topic><topic>Vegetation mapping</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, G.</creatorcontrib><creatorcontrib>Ranson, K.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, G.</au><au>Ranson, K.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling lidar returns from forest canopies</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2000-11-01</date><risdate>2000</risdate><volume>38</volume><issue>6</issue><spage>2617</spage><epage>2626</epage><pages>2617-2626</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Remote sensing techniques that utilize light detection and ranging (lidar) provide unique data on canopy geometry and subcanopy topography. This type of information will lead to improved understanding of important structures and processes of Earth's vegetation cover. To understand the relation between canopy structure and the lidar return waveform, a three-dimensional (3D) model was developed and implemented. Detailed field measurements and forest growth model simulations of forest stands were used to parameterize this vegetation lidar waveform model. In the model, the crown shape of trees determines the vertical distribution of plant material and the corresponding lidar waveforms. Preliminary comparisons of averaged waveforms from an airborne lidar and model simulations shows that the shape of the measured waveform was more similar to simulations using an ellipsoid or hemi-ellipsoid shape. The observed slower decay of the airborne lidar waveforms than the simulated waveforms may indicate the existence of the understories and may also suggest that higher order scattering from the upper canopy may contribute to the lidar signals. The lidar waveforms from stands simulated from a forest growth model show the dependence of the waveform on stand structure.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/36.885208</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2000-11, Vol.38 (6), p.2617-2626
issn 0196-2892
1558-0644
language eng
recordid cdi_pascalfrancis_primary_906526
source IEEE Xplore (Online service)
subjects Animal, plant and microbial ecology
Applied geophysics
Atmospheric modeling
Biological and medical sciences
Canopies
Computer simulation
Earth sciences
Earth, ocean, space
Exact sciences and technology
Forests
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Geometry
Growth models
Internal geophysics
Laser radar
Lidar
Ray tracing
Remote sensing
Shape measurement
Stands
Sun
Supports
Surface emitting lasers
Surface topography
Teledetection and vegetation maps
Vegetation
Vegetation mapping
Waveforms
title Modeling lidar returns from forest canopies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A52%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20lidar%20returns%20from%20forest%20canopies&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Sun,%20G.&rft.date=2000-11-01&rft.volume=38&rft.issue=6&rft.spage=2617&rft.epage=2626&rft.pages=2617-2626&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/36.885208&rft_dat=%3Cproquest_pasca%3E2434535381%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-a5404318ed0e59f346636b8480523a3b33dcf152a0e23281d7184c4670d5995b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=885063579&rft_id=info:pmid/&rft_ieee_id=885208&rfr_iscdi=true