Loading…
Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disorder characterized by progressive motor and cognitive dysfunction. Caused by an expanded polyglutamine tract in ataxin 1 (ATXN1), SCA1 pathogenesis involves a multifactorial process that likely begins with misfoldin...
Saved in:
Published in: | PLoS medicine 2007-05, Vol.4 (5), p.e182 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c831t-be794174ec8b38fa369d1d2ce6c70acfc5c1fccee8ac5c62b4694b1b8a7fa3cb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c831t-be794174ec8b38fa369d1d2ce6c70acfc5c1fccee8ac5c62b4694b1b8a7fa3cb3 |
container_end_page | |
container_issue | 5 |
container_start_page | e182 |
container_title | PLoS medicine |
container_volume | 4 |
creator | Watase, Kei Gatchel, Jennifer R Sun, Yaling Emamian, Effat Atkinson, Richard Richman, Ronald Mizusawa, Hidehiro Orr, Harry T Shaw, Chad Zoghbi, Huda Y |
description | Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disorder characterized by progressive motor and cognitive dysfunction. Caused by an expanded polyglutamine tract in ataxin 1 (ATXN1), SCA1 pathogenesis involves a multifactorial process that likely begins with misfolding of ATXN1, which has functional consequences on its interactions, leading to transcriptional dysregulation. Because lithium has been shown to exert neuroprotective effects in a variety of conditions, possibly by affecting gene expression, we tested the efficacy of lithium treatment in a knock-in mouse model of SCA1 (Sca1(154Q/2Q) mice) that replicates many features of the human disease.
Sca1(154Q/2Q) mice and their wild-type littermates were fed either regular chow or chow that contained 0.2% lithium carbonate. Dietary lithium carbonate supplementation resulted in improvement of motor coordination, learning, and memory in Sca1(154Q/2Q) mice. Importantly, motor improvement was seen when treatment was initiated both presymptomatically and after symptom onset. Neuropathologically, lithium treatment attenuated the reduction of dendritic branching in mutant hippocampal pyramidal neurons. We also report that lithium treatment restored the levels of isoprenylcysteine carboxyl methyltransferase (Icmt; alternatively, Pccmt), down-regulation of which is an early marker of mutant ATXN1 toxicity.
The effect of lithium on a marker altered early in the course of SCA1 pathogenesis, coupled with its positive effect on multiple behavioral measures and hippocampal neuropathology in an authentic disease model, make it an excellent candidate treatment for human SCA1 patients. |
doi_str_mv | 10.1371/journal.pmed.0040182 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1288083924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A166431379</galeid><doaj_id>oai_doaj_org_article_842112045f544809ae38af0f330a2003</doaj_id><sourcerecordid>A166431379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c831t-be794174ec8b38fa369d1d2ce6c70acfc5c1fccee8ac5c62b4694b1b8a7fa3cb3</originalsourceid><addsrcrecordid>eNqVk9-L1DAQx4so3nn6H4gWhAMfdk2a9NeLcBz-WFg88NdrmKbTbpY0qUl73PrsH256W3VX7kEJJGHymW8mM5koekrJkrKcvtra0RnQy77DekkIJ7RI7kWnNOXlgmZ5dv9gfxI98n5LSFKSkjyMTmiespQSfhr9WKtho8YuHjbooN_FquudvUYfGxyd1bZVEnTcjEYOypoYTB1vVN9bCV0fDmo0tVODkjG4yjr1HW4xFcjY98pYiQ4r1BpcDAPcKIiHXY8xjTs7egxzjfpx9KAB7fHJvJ5FX96--Xz5frG-ere6vFgvZMHosKgwLznNOcqiYkUDLCtrWicSM5kTkI1MJW2kRCwgbLOk4lnJK1oVkAdYVuwser7X7bX1Yk6gFzQpClKwMuGBWO2J2sJW9E514HbCghK3ButaAS68VqMoeEJpQnjapJwXpARkBTSkYYxAQggLWq_n28Yq1EiiGRzoI9HjE6M2orXXgk7hpJPA-Szg7LcR_SA65eWUS4MheSKhnKc8TQL44i_w7rct9lQLIXxlGhtulS2aUHhtDTYqmC9olnEWPlgZ-OUdfBg1dkre6fDyyCEwA94MLYzei9Wnj__Bfvh39urrMXt-wG4Q9LDxVo_Tr_THIN-D0lnvHTa_C0OJmBrsVw7F1GBibrDg9uywqH-c5o5iPwFzVSN2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1288083924</pqid></control><display><type>article</type><title>Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Watase, Kei ; Gatchel, Jennifer R ; Sun, Yaling ; Emamian, Effat ; Atkinson, Richard ; Richman, Ronald ; Mizusawa, Hidehiro ; Orr, Harry T ; Shaw, Chad ; Zoghbi, Huda Y</creator><contributor>Hyman, Steven E</contributor><creatorcontrib>Watase, Kei ; Gatchel, Jennifer R ; Sun, Yaling ; Emamian, Effat ; Atkinson, Richard ; Richman, Ronald ; Mizusawa, Hidehiro ; Orr, Harry T ; Shaw, Chad ; Zoghbi, Huda Y ; Hyman, Steven E</creatorcontrib><description>Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disorder characterized by progressive motor and cognitive dysfunction. Caused by an expanded polyglutamine tract in ataxin 1 (ATXN1), SCA1 pathogenesis involves a multifactorial process that likely begins with misfolding of ATXN1, which has functional consequences on its interactions, leading to transcriptional dysregulation. Because lithium has been shown to exert neuroprotective effects in a variety of conditions, possibly by affecting gene expression, we tested the efficacy of lithium treatment in a knock-in mouse model of SCA1 (Sca1(154Q/2Q) mice) that replicates many features of the human disease.
Sca1(154Q/2Q) mice and their wild-type littermates were fed either regular chow or chow that contained 0.2% lithium carbonate. Dietary lithium carbonate supplementation resulted in improvement of motor coordination, learning, and memory in Sca1(154Q/2Q) mice. Importantly, motor improvement was seen when treatment was initiated both presymptomatically and after symptom onset. Neuropathologically, lithium treatment attenuated the reduction of dendritic branching in mutant hippocampal pyramidal neurons. We also report that lithium treatment restored the levels of isoprenylcysteine carboxyl methyltransferase (Icmt; alternatively, Pccmt), down-regulation of which is an early marker of mutant ATXN1 toxicity.
The effect of lithium on a marker altered early in the course of SCA1 pathogenesis, coupled with its positive effect on multiple behavioral measures and hippocampal neuropathology in an authentic disease model, make it an excellent candidate treatment for human SCA1 patients.</description><identifier>ISSN: 1549-1676</identifier><identifier>ISSN: 1549-1277</identifier><identifier>EISSN: 1549-1676</identifier><identifier>DOI: 10.1371/journal.pmed.0040182</identifier><identifier>PMID: 17535104</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antimanic Agents - pharmacology ; Ataxia ; Ataxin-1 ; Ataxins ; Brain research ; Cognition & reasoning ; Cognitive ability ; Dendrites - enzymology ; Dendrites - pathology ; Disease ; Drug therapy ; Female ; Gene expression ; Genetics and Genomics ; Glycogen Synthase Kinase 3 - metabolism ; Glycogen Synthase Kinase 3 beta ; Hippocampus - pathology ; Influence ; Lithium ; Lithium Carbonate - pharmacology ; Male ; Maze Learning - drug effects ; Memory ; Memory - drug effects ; Mice ; Mice, Inbred C57BL ; Mice, Neurologic Mutants ; Motor Activity - drug effects ; Motor Neuron Disease ; Nerve Tissue Proteins - genetics ; Neurodegeneration ; Neurological Disorders ; Neurological research ; Neurology ; Neurons ; Neuroscience ; Nuclear Proteins - genetics ; Pathogenesis ; Phosphorylation - drug effects ; Protein Methyltransferases - genetics ; Proteins ; Proto-Oncogene Proteins c-akt - metabolism ; RNA, Messenger - metabolism ; Spinocerebellar ataxia ; Spinocerebellar Ataxias - drug therapy ; Spinocerebellar Ataxias - genetics ; Spinocerebellar Ataxias - pathology ; Toxicity</subject><ispartof>PLoS medicine, 2007-05, Vol.4 (5), p.e182</ispartof><rights>COPYRIGHT 2007 Public Library of Science</rights><rights>2007 Watase et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Watase K, Gatchel JR, Sun Y, Emamian E, Atkinson R, et al. (2007) Lithium Therapy Improves Neurological Function and Hippocampal Dendritic Arborization in a Spinocerebellar Ataxia Type 1 Mouse Model. PLoS Med 4(5): e182. doi:10.1371/journal.pmed.0040182</rights><rights>2007 Watase et al. 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c831t-be794174ec8b38fa369d1d2ce6c70acfc5c1fccee8ac5c62b4694b1b8a7fa3cb3</citedby><cites>FETCH-LOGICAL-c831t-be794174ec8b38fa369d1d2ce6c70acfc5c1fccee8ac5c62b4694b1b8a7fa3cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1288083924/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1288083924?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17535104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hyman, Steven E</contributor><creatorcontrib>Watase, Kei</creatorcontrib><creatorcontrib>Gatchel, Jennifer R</creatorcontrib><creatorcontrib>Sun, Yaling</creatorcontrib><creatorcontrib>Emamian, Effat</creatorcontrib><creatorcontrib>Atkinson, Richard</creatorcontrib><creatorcontrib>Richman, Ronald</creatorcontrib><creatorcontrib>Mizusawa, Hidehiro</creatorcontrib><creatorcontrib>Orr, Harry T</creatorcontrib><creatorcontrib>Shaw, Chad</creatorcontrib><creatorcontrib>Zoghbi, Huda Y</creatorcontrib><title>Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model</title><title>PLoS medicine</title><addtitle>PLoS Med</addtitle><description>Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disorder characterized by progressive motor and cognitive dysfunction. Caused by an expanded polyglutamine tract in ataxin 1 (ATXN1), SCA1 pathogenesis involves a multifactorial process that likely begins with misfolding of ATXN1, which has functional consequences on its interactions, leading to transcriptional dysregulation. Because lithium has been shown to exert neuroprotective effects in a variety of conditions, possibly by affecting gene expression, we tested the efficacy of lithium treatment in a knock-in mouse model of SCA1 (Sca1(154Q/2Q) mice) that replicates many features of the human disease.
Sca1(154Q/2Q) mice and their wild-type littermates were fed either regular chow or chow that contained 0.2% lithium carbonate. Dietary lithium carbonate supplementation resulted in improvement of motor coordination, learning, and memory in Sca1(154Q/2Q) mice. Importantly, motor improvement was seen when treatment was initiated both presymptomatically and after symptom onset. Neuropathologically, lithium treatment attenuated the reduction of dendritic branching in mutant hippocampal pyramidal neurons. We also report that lithium treatment restored the levels of isoprenylcysteine carboxyl methyltransferase (Icmt; alternatively, Pccmt), down-regulation of which is an early marker of mutant ATXN1 toxicity.
The effect of lithium on a marker altered early in the course of SCA1 pathogenesis, coupled with its positive effect on multiple behavioral measures and hippocampal neuropathology in an authentic disease model, make it an excellent candidate treatment for human SCA1 patients.</description><subject>Animals</subject><subject>Antimanic Agents - pharmacology</subject><subject>Ataxia</subject><subject>Ataxin-1</subject><subject>Ataxins</subject><subject>Brain research</subject><subject>Cognition & reasoning</subject><subject>Cognitive ability</subject><subject>Dendrites - enzymology</subject><subject>Dendrites - pathology</subject><subject>Disease</subject><subject>Drug therapy</subject><subject>Female</subject><subject>Gene expression</subject><subject>Genetics and Genomics</subject><subject>Glycogen Synthase Kinase 3 - metabolism</subject><subject>Glycogen Synthase Kinase 3 beta</subject><subject>Hippocampus - pathology</subject><subject>Influence</subject><subject>Lithium</subject><subject>Lithium Carbonate - pharmacology</subject><subject>Male</subject><subject>Maze Learning - drug effects</subject><subject>Memory</subject><subject>Memory - drug effects</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Neurologic Mutants</subject><subject>Motor Activity - drug effects</subject><subject>Motor Neuron Disease</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Neurodegeneration</subject><subject>Neurological Disorders</subject><subject>Neurological research</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Nuclear Proteins - genetics</subject><subject>Pathogenesis</subject><subject>Phosphorylation - drug effects</subject><subject>Protein Methyltransferases - genetics</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>Spinocerebellar ataxia</subject><subject>Spinocerebellar Ataxias - drug therapy</subject><subject>Spinocerebellar Ataxias - genetics</subject><subject>Spinocerebellar Ataxias - pathology</subject><subject>Toxicity</subject><issn>1549-1676</issn><issn>1549-1277</issn><issn>1549-1676</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9-L1DAQx4so3nn6H4gWhAMfdk2a9NeLcBz-WFg88NdrmKbTbpY0qUl73PrsH256W3VX7kEJJGHymW8mM5koekrJkrKcvtra0RnQy77DekkIJ7RI7kWnNOXlgmZ5dv9gfxI98n5LSFKSkjyMTmiespQSfhr9WKtho8YuHjbooN_FquudvUYfGxyd1bZVEnTcjEYOypoYTB1vVN9bCV0fDmo0tVODkjG4yjr1HW4xFcjY98pYiQ4r1BpcDAPcKIiHXY8xjTs7egxzjfpx9KAB7fHJvJ5FX96--Xz5frG-ere6vFgvZMHosKgwLznNOcqiYkUDLCtrWicSM5kTkI1MJW2kRCwgbLOk4lnJK1oVkAdYVuwser7X7bX1Yk6gFzQpClKwMuGBWO2J2sJW9E514HbCghK3ButaAS68VqMoeEJpQnjapJwXpARkBTSkYYxAQggLWq_n28Yq1EiiGRzoI9HjE6M2orXXgk7hpJPA-Szg7LcR_SA65eWUS4MheSKhnKc8TQL44i_w7rct9lQLIXxlGhtulS2aUHhtDTYqmC9olnEWPlgZ-OUdfBg1dkre6fDyyCEwA94MLYzei9Wnj__Bfvh39urrMXt-wG4Q9LDxVo_Tr_THIN-D0lnvHTa_C0OJmBrsVw7F1GBibrDg9uywqH-c5o5iPwFzVSN2</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Watase, Kei</creator><creator>Gatchel, Jennifer R</creator><creator>Sun, Yaling</creator><creator>Emamian, Effat</creator><creator>Atkinson, Richard</creator><creator>Richman, Ronald</creator><creator>Mizusawa, Hidehiro</creator><creator>Orr, Harry T</creator><creator>Shaw, Chad</creator><creator>Zoghbi, Huda Y</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><scope>CZK</scope></search><sort><creationdate>20070501</creationdate><title>Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model</title><author>Watase, Kei ; Gatchel, Jennifer R ; Sun, Yaling ; Emamian, Effat ; Atkinson, Richard ; Richman, Ronald ; Mizusawa, Hidehiro ; Orr, Harry T ; Shaw, Chad ; Zoghbi, Huda Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c831t-be794174ec8b38fa369d1d2ce6c70acfc5c1fccee8ac5c62b4694b1b8a7fa3cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Antimanic Agents - pharmacology</topic><topic>Ataxia</topic><topic>Ataxin-1</topic><topic>Ataxins</topic><topic>Brain research</topic><topic>Cognition & reasoning</topic><topic>Cognitive ability</topic><topic>Dendrites - enzymology</topic><topic>Dendrites - pathology</topic><topic>Disease</topic><topic>Drug therapy</topic><topic>Female</topic><topic>Gene expression</topic><topic>Genetics and Genomics</topic><topic>Glycogen Synthase Kinase 3 - metabolism</topic><topic>Glycogen Synthase Kinase 3 beta</topic><topic>Hippocampus - pathology</topic><topic>Influence</topic><topic>Lithium</topic><topic>Lithium Carbonate - pharmacology</topic><topic>Male</topic><topic>Maze Learning - drug effects</topic><topic>Memory</topic><topic>Memory - drug effects</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Neurologic Mutants</topic><topic>Motor Activity - drug effects</topic><topic>Motor Neuron Disease</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Neurodegeneration</topic><topic>Neurological Disorders</topic><topic>Neurological research</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Nuclear Proteins - genetics</topic><topic>Pathogenesis</topic><topic>Phosphorylation - drug effects</topic><topic>Protein Methyltransferases - genetics</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>Spinocerebellar ataxia</topic><topic>Spinocerebellar Ataxias - drug therapy</topic><topic>Spinocerebellar Ataxias - genetics</topic><topic>Spinocerebellar Ataxias - pathology</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watase, Kei</creatorcontrib><creatorcontrib>Gatchel, Jennifer R</creatorcontrib><creatorcontrib>Sun, Yaling</creatorcontrib><creatorcontrib>Emamian, Effat</creatorcontrib><creatorcontrib>Atkinson, Richard</creatorcontrib><creatorcontrib>Richman, Ronald</creatorcontrib><creatorcontrib>Mizusawa, Hidehiro</creatorcontrib><creatorcontrib>Orr, Harry T</creatorcontrib><creatorcontrib>Shaw, Chad</creatorcontrib><creatorcontrib>Zoghbi, Huda Y</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Medicine</collection><jtitle>PLoS medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watase, Kei</au><au>Gatchel, Jennifer R</au><au>Sun, Yaling</au><au>Emamian, Effat</au><au>Atkinson, Richard</au><au>Richman, Ronald</au><au>Mizusawa, Hidehiro</au><au>Orr, Harry T</au><au>Shaw, Chad</au><au>Zoghbi, Huda Y</au><au>Hyman, Steven E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model</atitle><jtitle>PLoS medicine</jtitle><addtitle>PLoS Med</addtitle><date>2007-05-01</date><risdate>2007</risdate><volume>4</volume><issue>5</issue><spage>e182</spage><pages>e182-</pages><issn>1549-1676</issn><issn>1549-1277</issn><eissn>1549-1676</eissn><abstract>Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disorder characterized by progressive motor and cognitive dysfunction. Caused by an expanded polyglutamine tract in ataxin 1 (ATXN1), SCA1 pathogenesis involves a multifactorial process that likely begins with misfolding of ATXN1, which has functional consequences on its interactions, leading to transcriptional dysregulation. Because lithium has been shown to exert neuroprotective effects in a variety of conditions, possibly by affecting gene expression, we tested the efficacy of lithium treatment in a knock-in mouse model of SCA1 (Sca1(154Q/2Q) mice) that replicates many features of the human disease.
Sca1(154Q/2Q) mice and their wild-type littermates were fed either regular chow or chow that contained 0.2% lithium carbonate. Dietary lithium carbonate supplementation resulted in improvement of motor coordination, learning, and memory in Sca1(154Q/2Q) mice. Importantly, motor improvement was seen when treatment was initiated both presymptomatically and after symptom onset. Neuropathologically, lithium treatment attenuated the reduction of dendritic branching in mutant hippocampal pyramidal neurons. We also report that lithium treatment restored the levels of isoprenylcysteine carboxyl methyltransferase (Icmt; alternatively, Pccmt), down-regulation of which is an early marker of mutant ATXN1 toxicity.
The effect of lithium on a marker altered early in the course of SCA1 pathogenesis, coupled with its positive effect on multiple behavioral measures and hippocampal neuropathology in an authentic disease model, make it an excellent candidate treatment for human SCA1 patients.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>17535104</pmid><doi>10.1371/journal.pmed.0040182</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-1676 |
ispartof | PLoS medicine, 2007-05, Vol.4 (5), p.e182 |
issn | 1549-1676 1549-1277 1549-1676 |
language | eng |
recordid | cdi_plos_journals_1288083924 |
source | Publicly Available Content Database; PubMed Central |
subjects | Animals Antimanic Agents - pharmacology Ataxia Ataxin-1 Ataxins Brain research Cognition & reasoning Cognitive ability Dendrites - enzymology Dendrites - pathology Disease Drug therapy Female Gene expression Genetics and Genomics Glycogen Synthase Kinase 3 - metabolism Glycogen Synthase Kinase 3 beta Hippocampus - pathology Influence Lithium Lithium Carbonate - pharmacology Male Maze Learning - drug effects Memory Memory - drug effects Mice Mice, Inbred C57BL Mice, Neurologic Mutants Motor Activity - drug effects Motor Neuron Disease Nerve Tissue Proteins - genetics Neurodegeneration Neurological Disorders Neurological research Neurology Neurons Neuroscience Nuclear Proteins - genetics Pathogenesis Phosphorylation - drug effects Protein Methyltransferases - genetics Proteins Proto-Oncogene Proteins c-akt - metabolism RNA, Messenger - metabolism Spinocerebellar ataxia Spinocerebellar Ataxias - drug therapy Spinocerebellar Ataxias - genetics Spinocerebellar Ataxias - pathology Toxicity |
title | Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A29%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20therapy%20improves%20neurological%20function%20and%20hippocampal%20dendritic%20arborization%20in%20a%20spinocerebellar%20ataxia%20type%201%20mouse%20model&rft.jtitle=PLoS%20medicine&rft.au=Watase,%20Kei&rft.date=2007-05-01&rft.volume=4&rft.issue=5&rft.spage=e182&rft.pages=e182-&rft.issn=1549-1676&rft.eissn=1549-1676&rft_id=info:doi/10.1371/journal.pmed.0040182&rft_dat=%3Cgale_plos_%3EA166431379%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c831t-be794174ec8b38fa369d1d2ce6c70acfc5c1fccee8ac5c62b4694b1b8a7fa3cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1288083924&rft_id=info:pmid/17535104&rft_galeid=A166431379&rfr_iscdi=true |