Loading…

Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection

The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in humans, and DENV is the most important arbovirus across most of the subtropics and tropics worldwide. The early time periods after infection with DENV define critical cellular processes that determine ultimate succe...

Full description

Saved in:
Bibliographic Details
Published in:PLoS neglected tropical diseases 2011-11, Vol.5 (11), p.e1385-e1385
Main Authors: Behura, Susanta K, Gomez-Machorro, Consuelo, Harker, Brent W, deBruyn, Becky, Lovin, Diane D, Hemme, Ryan R, Mori, Akio, Romero-Severson, Jeanne, Severson, David W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c661t-e80c59b54e07f942a1cac9231365adae081b9f5506df34239f00f3dfb211e47a3
cites cdi_FETCH-LOGICAL-c661t-e80c59b54e07f942a1cac9231365adae081b9f5506df34239f00f3dfb211e47a3
container_end_page e1385
container_issue 11
container_start_page e1385
container_title PLoS neglected tropical diseases
container_volume 5
creator Behura, Susanta K
Gomez-Machorro, Consuelo
Harker, Brent W
deBruyn, Becky
Lovin, Diane D
Hemme, Ryan R
Mori, Akio
Romero-Severson, Jeanne
Severson, David W
description The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in humans, and DENV is the most important arbovirus across most of the subtropics and tropics worldwide. The early time periods after infection with DENV define critical cellular processes that determine ultimate success or failure of the virus to establish infection in the mosquito. To identify genes involved in these processes, we performed genome-wide transcriptome profiling between susceptible and refractory A. aegypti strains at two critical early periods after challenging them with DENV. Genes that responded coordinately to DENV infection in the susceptible strain were largely clustered in one specific expression module, whereas in the refractory strain they were distributed in four distinct modules. The susceptible response module in the global transcriptional network showed significant biased representation with genes related to energy metabolism and DNA replication, whereas the refractory response modules showed biased representation across different metabolism pathway genes including cytochrome P450 and DDT [1,1,1-Trichloro-2,2-bis(4-chlorophenyl) ethane] degradation genes, and genes associated with cell growth and death. A common core set of coordinately expressed genes was observed in both the susceptible and refractory mosquitoes and included genes related to the Wnt (Wnt: wingless [wg] and integration 1 [int1] pathway), MAPK (Mitogen-activated protein kinase), mTOR (mammalian target of rapamycin) and JAK-STAT (Janus Kinase - Signal Transducer and Activator of Transcription) pathways. Our data revealed extensive transcriptional networks of mosquito genes that are expressed in modular manners in response to DENV infection, and indicated that successfully defending against viral infection requires more elaborate gene networks than hosting the virus. These likely play important roles in the global-cross talk among the mosquito host factors during the critical early DENV infection periods that trigger the appropriate host action in susceptible vs. refractory mosquitoes.
doi_str_mv 10.1371/journal.pntd.0001385
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1288103253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A274307613</galeid><doaj_id>oai_doaj_org_article_8c7088e686d04619bce765e1228433a4</doaj_id><sourcerecordid>A274307613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-e80c59b54e07f942a1cac9231365adae081b9f5506df34239f00f3dfb211e47a3</originalsourceid><addsrcrecordid>eNptUl1rFDEUHUSxtfoPRAcEfdo1H5NM8lJYitZCwRd9NWQyd2azZpNtkin035vpbssuSB4S7j3nJPfkVNV7jJaYtvjrJkzRa7fc-dwvEUKYCvaiOseSsgVpKXt5dD6r3qS0QYhJJvDr6owQjIgk5Lz6c-1Cp11tYkhpkbX7W4ehHsFDmg95DfU2pLvJ5lCvoC9VDePDLtva-jpC2gWfoC7NHvw4QX1v45RKbwCTbfBvq1eDdgneHfaL6vf3b7-ufixuf17fXK1uF4ZznBcgkGGyYw2gdpAN0dhoIwnFlDPda0ACd3JgDPF-oA2hckBooP3QEYyhaTW9qD7udXcuJHWwJilMhMCIEkYL4maP6IPeqF20Wx0fVNBWPRZCHJWO2RoHSpgWCQFc8B41HMvOQMsZYEJEQ6luitbl4bap20JvwOeo3YnoacfbtRrDvaIEc4l5EfhyEIjhboKU1dYmA85pD2FKSiLGBW5kW5Cf9shRl5cVX0MRNDNarUjbUNRyPA-3_A-qrB621gQPgy31E8LnI8IatMvrFNw0_1k6BTZ74GNAIgzPU2Kk5hw-ma3mHKpDDgvtw7FDz6Sn4NF_El_Zuw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905681497</pqid></control><display><type>article</type><title>Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Behura, Susanta K ; Gomez-Machorro, Consuelo ; Harker, Brent W ; deBruyn, Becky ; Lovin, Diane D ; Hemme, Ryan R ; Mori, Akio ; Romero-Severson, Jeanne ; Severson, David W</creator><contributor>James, Anthony A.</contributor><creatorcontrib>Behura, Susanta K ; Gomez-Machorro, Consuelo ; Harker, Brent W ; deBruyn, Becky ; Lovin, Diane D ; Hemme, Ryan R ; Mori, Akio ; Romero-Severson, Jeanne ; Severson, David W ; James, Anthony A.</creatorcontrib><description>The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in humans, and DENV is the most important arbovirus across most of the subtropics and tropics worldwide. The early time periods after infection with DENV define critical cellular processes that determine ultimate success or failure of the virus to establish infection in the mosquito. To identify genes involved in these processes, we performed genome-wide transcriptome profiling between susceptible and refractory A. aegypti strains at two critical early periods after challenging them with DENV. Genes that responded coordinately to DENV infection in the susceptible strain were largely clustered in one specific expression module, whereas in the refractory strain they were distributed in four distinct modules. The susceptible response module in the global transcriptional network showed significant biased representation with genes related to energy metabolism and DNA replication, whereas the refractory response modules showed biased representation across different metabolism pathway genes including cytochrome P450 and DDT [1,1,1-Trichloro-2,2-bis(4-chlorophenyl) ethane] degradation genes, and genes associated with cell growth and death. A common core set of coordinately expressed genes was observed in both the susceptible and refractory mosquitoes and included genes related to the Wnt (Wnt: wingless [wg] and integration 1 [int1] pathway), MAPK (Mitogen-activated protein kinase), mTOR (mammalian target of rapamycin) and JAK-STAT (Janus Kinase - Signal Transducer and Activator of Transcription) pathways. Our data revealed extensive transcriptional networks of mosquito genes that are expressed in modular manners in response to DENV infection, and indicated that successfully defending against viral infection requires more elaborate gene networks than hosting the virus. These likely play important roles in the global-cross talk among the mosquito host factors during the critical early DENV infection periods that trigger the appropriate host action in susceptible vs. refractory mosquitoes.</description><identifier>ISSN: 1935-2735</identifier><identifier>ISSN: 1935-2727</identifier><identifier>EISSN: 1935-2735</identifier><identifier>DOI: 10.1371/journal.pntd.0001385</identifier><identifier>PMID: 22102922</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aedes - genetics ; Aedes - metabolism ; Aedes - virology ; Animals ; Biology ; Cluster Analysis ; Dengue ; Dengue - transmission ; Dengue - virology ; Dengue Virus - physiology ; Disease susceptibility ; Female ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation ; Genes, Insect ; Genetic aspects ; Genomes ; Health aspects ; Host-Pathogen Interactions ; Humans ; Insect Proteins - genetics ; Insect Proteins - metabolism ; Insect Vectors - genetics ; Insect Vectors - metabolism ; Insect Vectors - virology ; Kinases ; Mosquitoes ; Oligonucleotide Array Sequence Analysis ; Proteins ; Real-Time Polymerase Chain Reaction ; Reproducibility of Results ; Signal Transduction ; Viral infections</subject><ispartof>PLoS neglected tropical diseases, 2011-11, Vol.5 (11), p.e1385-e1385</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>Behura et al. 2011</rights><rights>2011 Behura et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Behura SK, Gomez-Machorro C, Harker BW, deBruyn B, Lovin DD, et al. (2011) Global Cross-Talk of Genes of the Mosquito Aedes aegypti in Response to Dengue Virus Infection. PLoS Negl Trop Dis 5(11): e1385. doi:10.1371/journal.pntd.0001385</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-e80c59b54e07f942a1cac9231365adae081b9f5506df34239f00f3dfb211e47a3</citedby><cites>FETCH-LOGICAL-c661t-e80c59b54e07f942a1cac9231365adae081b9f5506df34239f00f3dfb211e47a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3216916/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3216916/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,37012,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22102922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>James, Anthony A.</contributor><creatorcontrib>Behura, Susanta K</creatorcontrib><creatorcontrib>Gomez-Machorro, Consuelo</creatorcontrib><creatorcontrib>Harker, Brent W</creatorcontrib><creatorcontrib>deBruyn, Becky</creatorcontrib><creatorcontrib>Lovin, Diane D</creatorcontrib><creatorcontrib>Hemme, Ryan R</creatorcontrib><creatorcontrib>Mori, Akio</creatorcontrib><creatorcontrib>Romero-Severson, Jeanne</creatorcontrib><creatorcontrib>Severson, David W</creatorcontrib><title>Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection</title><title>PLoS neglected tropical diseases</title><addtitle>PLoS Negl Trop Dis</addtitle><description>The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in humans, and DENV is the most important arbovirus across most of the subtropics and tropics worldwide. The early time periods after infection with DENV define critical cellular processes that determine ultimate success or failure of the virus to establish infection in the mosquito. To identify genes involved in these processes, we performed genome-wide transcriptome profiling between susceptible and refractory A. aegypti strains at two critical early periods after challenging them with DENV. Genes that responded coordinately to DENV infection in the susceptible strain were largely clustered in one specific expression module, whereas in the refractory strain they were distributed in four distinct modules. The susceptible response module in the global transcriptional network showed significant biased representation with genes related to energy metabolism and DNA replication, whereas the refractory response modules showed biased representation across different metabolism pathway genes including cytochrome P450 and DDT [1,1,1-Trichloro-2,2-bis(4-chlorophenyl) ethane] degradation genes, and genes associated with cell growth and death. A common core set of coordinately expressed genes was observed in both the susceptible and refractory mosquitoes and included genes related to the Wnt (Wnt: wingless [wg] and integration 1 [int1] pathway), MAPK (Mitogen-activated protein kinase), mTOR (mammalian target of rapamycin) and JAK-STAT (Janus Kinase - Signal Transducer and Activator of Transcription) pathways. Our data revealed extensive transcriptional networks of mosquito genes that are expressed in modular manners in response to DENV infection, and indicated that successfully defending against viral infection requires more elaborate gene networks than hosting the virus. These likely play important roles in the global-cross talk among the mosquito host factors during the critical early DENV infection periods that trigger the appropriate host action in susceptible vs. refractory mosquitoes.</description><subject>Aedes - genetics</subject><subject>Aedes - metabolism</subject><subject>Aedes - virology</subject><subject>Animals</subject><subject>Biology</subject><subject>Cluster Analysis</subject><subject>Dengue</subject><subject>Dengue - transmission</subject><subject>Dengue - virology</subject><subject>Dengue Virus - physiology</subject><subject>Disease susceptibility</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Genes, Insect</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>Insect Proteins - genetics</subject><subject>Insect Proteins - metabolism</subject><subject>Insect Vectors - genetics</subject><subject>Insect Vectors - metabolism</subject><subject>Insect Vectors - virology</subject><subject>Kinases</subject><subject>Mosquitoes</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Proteins</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Reproducibility of Results</subject><subject>Signal Transduction</subject><subject>Viral infections</subject><issn>1935-2735</issn><issn>1935-2727</issn><issn>1935-2735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptUl1rFDEUHUSxtfoPRAcEfdo1H5NM8lJYitZCwRd9NWQyd2azZpNtkin035vpbssuSB4S7j3nJPfkVNV7jJaYtvjrJkzRa7fc-dwvEUKYCvaiOseSsgVpKXt5dD6r3qS0QYhJJvDr6owQjIgk5Lz6c-1Cp11tYkhpkbX7W4ehHsFDmg95DfU2pLvJ5lCvoC9VDePDLtva-jpC2gWfoC7NHvw4QX1v45RKbwCTbfBvq1eDdgneHfaL6vf3b7-ufixuf17fXK1uF4ZznBcgkGGyYw2gdpAN0dhoIwnFlDPda0ACd3JgDPF-oA2hckBooP3QEYyhaTW9qD7udXcuJHWwJilMhMCIEkYL4maP6IPeqF20Wx0fVNBWPRZCHJWO2RoHSpgWCQFc8B41HMvOQMsZYEJEQ6luitbl4bap20JvwOeo3YnoacfbtRrDvaIEc4l5EfhyEIjhboKU1dYmA85pD2FKSiLGBW5kW5Cf9shRl5cVX0MRNDNarUjbUNRyPA-3_A-qrB621gQPgy31E8LnI8IatMvrFNw0_1k6BTZ74GNAIgzPU2Kk5hw-ma3mHKpDDgvtw7FDz6Sn4NF_El_Zuw</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Behura, Susanta K</creator><creator>Gomez-Machorro, Consuelo</creator><creator>Harker, Brent W</creator><creator>deBruyn, Becky</creator><creator>Lovin, Diane D</creator><creator>Hemme, Ryan R</creator><creator>Mori, Akio</creator><creator>Romero-Severson, Jeanne</creator><creator>Severson, David W</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111101</creationdate><title>Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection</title><author>Behura, Susanta K ; Gomez-Machorro, Consuelo ; Harker, Brent W ; deBruyn, Becky ; Lovin, Diane D ; Hemme, Ryan R ; Mori, Akio ; Romero-Severson, Jeanne ; Severson, David W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-e80c59b54e07f942a1cac9231365adae081b9f5506df34239f00f3dfb211e47a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aedes - genetics</topic><topic>Aedes - metabolism</topic><topic>Aedes - virology</topic><topic>Animals</topic><topic>Biology</topic><topic>Cluster Analysis</topic><topic>Dengue</topic><topic>Dengue - transmission</topic><topic>Dengue - virology</topic><topic>Dengue Virus - physiology</topic><topic>Disease susceptibility</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Genes, Insect</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>Insect Proteins - genetics</topic><topic>Insect Proteins - metabolism</topic><topic>Insect Vectors - genetics</topic><topic>Insect Vectors - metabolism</topic><topic>Insect Vectors - virology</topic><topic>Kinases</topic><topic>Mosquitoes</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Proteins</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Reproducibility of Results</topic><topic>Signal Transduction</topic><topic>Viral infections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behura, Susanta K</creatorcontrib><creatorcontrib>Gomez-Machorro, Consuelo</creatorcontrib><creatorcontrib>Harker, Brent W</creatorcontrib><creatorcontrib>deBruyn, Becky</creatorcontrib><creatorcontrib>Lovin, Diane D</creatorcontrib><creatorcontrib>Hemme, Ryan R</creatorcontrib><creatorcontrib>Mori, Akio</creatorcontrib><creatorcontrib>Romero-Severson, Jeanne</creatorcontrib><creatorcontrib>Severson, David W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS neglected tropical diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behura, Susanta K</au><au>Gomez-Machorro, Consuelo</au><au>Harker, Brent W</au><au>deBruyn, Becky</au><au>Lovin, Diane D</au><au>Hemme, Ryan R</au><au>Mori, Akio</au><au>Romero-Severson, Jeanne</au><au>Severson, David W</au><au>James, Anthony A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection</atitle><jtitle>PLoS neglected tropical diseases</jtitle><addtitle>PLoS Negl Trop Dis</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>5</volume><issue>11</issue><spage>e1385</spage><epage>e1385</epage><pages>e1385-e1385</pages><issn>1935-2735</issn><issn>1935-2727</issn><eissn>1935-2735</eissn><abstract>The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in humans, and DENV is the most important arbovirus across most of the subtropics and tropics worldwide. The early time periods after infection with DENV define critical cellular processes that determine ultimate success or failure of the virus to establish infection in the mosquito. To identify genes involved in these processes, we performed genome-wide transcriptome profiling between susceptible and refractory A. aegypti strains at two critical early periods after challenging them with DENV. Genes that responded coordinately to DENV infection in the susceptible strain were largely clustered in one specific expression module, whereas in the refractory strain they were distributed in four distinct modules. The susceptible response module in the global transcriptional network showed significant biased representation with genes related to energy metabolism and DNA replication, whereas the refractory response modules showed biased representation across different metabolism pathway genes including cytochrome P450 and DDT [1,1,1-Trichloro-2,2-bis(4-chlorophenyl) ethane] degradation genes, and genes associated with cell growth and death. A common core set of coordinately expressed genes was observed in both the susceptible and refractory mosquitoes and included genes related to the Wnt (Wnt: wingless [wg] and integration 1 [int1] pathway), MAPK (Mitogen-activated protein kinase), mTOR (mammalian target of rapamycin) and JAK-STAT (Janus Kinase - Signal Transducer and Activator of Transcription) pathways. Our data revealed extensive transcriptional networks of mosquito genes that are expressed in modular manners in response to DENV infection, and indicated that successfully defending against viral infection requires more elaborate gene networks than hosting the virus. These likely play important roles in the global-cross talk among the mosquito host factors during the critical early DENV infection periods that trigger the appropriate host action in susceptible vs. refractory mosquitoes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22102922</pmid><doi>10.1371/journal.pntd.0001385</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1935-2735
ispartof PLoS neglected tropical diseases, 2011-11, Vol.5 (11), p.e1385-e1385
issn 1935-2735
1935-2727
1935-2735
language eng
recordid cdi_plos_journals_1288103253
source Publicly Available Content (ProQuest); PubMed Central
subjects Aedes - genetics
Aedes - metabolism
Aedes - virology
Animals
Biology
Cluster Analysis
Dengue
Dengue - transmission
Dengue - virology
Dengue Virus - physiology
Disease susceptibility
Female
Gene expression
Gene Expression Profiling
Gene Expression Regulation
Genes, Insect
Genetic aspects
Genomes
Health aspects
Host-Pathogen Interactions
Humans
Insect Proteins - genetics
Insect Proteins - metabolism
Insect Vectors - genetics
Insect Vectors - metabolism
Insect Vectors - virology
Kinases
Mosquitoes
Oligonucleotide Array Sequence Analysis
Proteins
Real-Time Polymerase Chain Reaction
Reproducibility of Results
Signal Transduction
Viral infections
title Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20cross-talk%20of%20genes%20of%20the%20mosquito%20Aedes%20aegypti%20in%20response%20to%20dengue%20virus%20infection&rft.jtitle=PLoS%20neglected%20tropical%20diseases&rft.au=Behura,%20Susanta%20K&rft.date=2011-11-01&rft.volume=5&rft.issue=11&rft.spage=e1385&rft.epage=e1385&rft.pages=e1385-e1385&rft.issn=1935-2735&rft.eissn=1935-2735&rft_id=info:doi/10.1371/journal.pntd.0001385&rft_dat=%3Cgale_plos_%3EA274307613%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c661t-e80c59b54e07f942a1cac9231365adae081b9f5506df34239f00f3dfb211e47a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=905681497&rft_id=info:pmid/22102922&rft_galeid=A274307613&rfr_iscdi=true