Loading…
Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection
The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in humans, and DENV is the most important arbovirus across most of the subtropics and tropics worldwide. The early time periods after infection with DENV define critical cellular processes that determine ultimate succe...
Saved in:
Published in: | PLoS neglected tropical diseases 2011-11, Vol.5 (11), p.e1385-e1385 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c661t-e80c59b54e07f942a1cac9231365adae081b9f5506df34239f00f3dfb211e47a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c661t-e80c59b54e07f942a1cac9231365adae081b9f5506df34239f00f3dfb211e47a3 |
container_end_page | e1385 |
container_issue | 11 |
container_start_page | e1385 |
container_title | PLoS neglected tropical diseases |
container_volume | 5 |
creator | Behura, Susanta K Gomez-Machorro, Consuelo Harker, Brent W deBruyn, Becky Lovin, Diane D Hemme, Ryan R Mori, Akio Romero-Severson, Jeanne Severson, David W |
description | The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in humans, and DENV is the most important arbovirus across most of the subtropics and tropics worldwide. The early time periods after infection with DENV define critical cellular processes that determine ultimate success or failure of the virus to establish infection in the mosquito.
To identify genes involved in these processes, we performed genome-wide transcriptome profiling between susceptible and refractory A. aegypti strains at two critical early periods after challenging them with DENV. Genes that responded coordinately to DENV infection in the susceptible strain were largely clustered in one specific expression module, whereas in the refractory strain they were distributed in four distinct modules. The susceptible response module in the global transcriptional network showed significant biased representation with genes related to energy metabolism and DNA replication, whereas the refractory response modules showed biased representation across different metabolism pathway genes including cytochrome P450 and DDT [1,1,1-Trichloro-2,2-bis(4-chlorophenyl) ethane] degradation genes, and genes associated with cell growth and death. A common core set of coordinately expressed genes was observed in both the susceptible and refractory mosquitoes and included genes related to the Wnt (Wnt: wingless [wg] and integration 1 [int1] pathway), MAPK (Mitogen-activated protein kinase), mTOR (mammalian target of rapamycin) and JAK-STAT (Janus Kinase - Signal Transducer and Activator of Transcription) pathways.
Our data revealed extensive transcriptional networks of mosquito genes that are expressed in modular manners in response to DENV infection, and indicated that successfully defending against viral infection requires more elaborate gene networks than hosting the virus. These likely play important roles in the global-cross talk among the mosquito host factors during the critical early DENV infection periods that trigger the appropriate host action in susceptible vs. refractory mosquitoes. |
doi_str_mv | 10.1371/journal.pntd.0001385 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1288103253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A274307613</galeid><doaj_id>oai_doaj_org_article_8c7088e686d04619bce765e1228433a4</doaj_id><sourcerecordid>A274307613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-e80c59b54e07f942a1cac9231365adae081b9f5506df34239f00f3dfb211e47a3</originalsourceid><addsrcrecordid>eNptUl1rFDEUHUSxtfoPRAcEfdo1H5NM8lJYitZCwRd9NWQyd2azZpNtkin035vpbssuSB4S7j3nJPfkVNV7jJaYtvjrJkzRa7fc-dwvEUKYCvaiOseSsgVpKXt5dD6r3qS0QYhJJvDr6owQjIgk5Lz6c-1Cp11tYkhpkbX7W4ehHsFDmg95DfU2pLvJ5lCvoC9VDePDLtva-jpC2gWfoC7NHvw4QX1v45RKbwCTbfBvq1eDdgneHfaL6vf3b7-ufixuf17fXK1uF4ZznBcgkGGyYw2gdpAN0dhoIwnFlDPda0ACd3JgDPF-oA2hckBooP3QEYyhaTW9qD7udXcuJHWwJilMhMCIEkYL4maP6IPeqF20Wx0fVNBWPRZCHJWO2RoHSpgWCQFc8B41HMvOQMsZYEJEQ6luitbl4bap20JvwOeo3YnoacfbtRrDvaIEc4l5EfhyEIjhboKU1dYmA85pD2FKSiLGBW5kW5Cf9shRl5cVX0MRNDNarUjbUNRyPA-3_A-qrB621gQPgy31E8LnI8IatMvrFNw0_1k6BTZ74GNAIgzPU2Kk5hw-ma3mHKpDDgvtw7FDz6Sn4NF_El_Zuw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905681497</pqid></control><display><type>article</type><title>Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Behura, Susanta K ; Gomez-Machorro, Consuelo ; Harker, Brent W ; deBruyn, Becky ; Lovin, Diane D ; Hemme, Ryan R ; Mori, Akio ; Romero-Severson, Jeanne ; Severson, David W</creator><contributor>James, Anthony A.</contributor><creatorcontrib>Behura, Susanta K ; Gomez-Machorro, Consuelo ; Harker, Brent W ; deBruyn, Becky ; Lovin, Diane D ; Hemme, Ryan R ; Mori, Akio ; Romero-Severson, Jeanne ; Severson, David W ; James, Anthony A.</creatorcontrib><description>The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in humans, and DENV is the most important arbovirus across most of the subtropics and tropics worldwide. The early time periods after infection with DENV define critical cellular processes that determine ultimate success or failure of the virus to establish infection in the mosquito.
To identify genes involved in these processes, we performed genome-wide transcriptome profiling between susceptible and refractory A. aegypti strains at two critical early periods after challenging them with DENV. Genes that responded coordinately to DENV infection in the susceptible strain were largely clustered in one specific expression module, whereas in the refractory strain they were distributed in four distinct modules. The susceptible response module in the global transcriptional network showed significant biased representation with genes related to energy metabolism and DNA replication, whereas the refractory response modules showed biased representation across different metabolism pathway genes including cytochrome P450 and DDT [1,1,1-Trichloro-2,2-bis(4-chlorophenyl) ethane] degradation genes, and genes associated with cell growth and death. A common core set of coordinately expressed genes was observed in both the susceptible and refractory mosquitoes and included genes related to the Wnt (Wnt: wingless [wg] and integration 1 [int1] pathway), MAPK (Mitogen-activated protein kinase), mTOR (mammalian target of rapamycin) and JAK-STAT (Janus Kinase - Signal Transducer and Activator of Transcription) pathways.
Our data revealed extensive transcriptional networks of mosquito genes that are expressed in modular manners in response to DENV infection, and indicated that successfully defending against viral infection requires more elaborate gene networks than hosting the virus. These likely play important roles in the global-cross talk among the mosquito host factors during the critical early DENV infection periods that trigger the appropriate host action in susceptible vs. refractory mosquitoes.</description><identifier>ISSN: 1935-2735</identifier><identifier>ISSN: 1935-2727</identifier><identifier>EISSN: 1935-2735</identifier><identifier>DOI: 10.1371/journal.pntd.0001385</identifier><identifier>PMID: 22102922</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aedes - genetics ; Aedes - metabolism ; Aedes - virology ; Animals ; Biology ; Cluster Analysis ; Dengue ; Dengue - transmission ; Dengue - virology ; Dengue Virus - physiology ; Disease susceptibility ; Female ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation ; Genes, Insect ; Genetic aspects ; Genomes ; Health aspects ; Host-Pathogen Interactions ; Humans ; Insect Proteins - genetics ; Insect Proteins - metabolism ; Insect Vectors - genetics ; Insect Vectors - metabolism ; Insect Vectors - virology ; Kinases ; Mosquitoes ; Oligonucleotide Array Sequence Analysis ; Proteins ; Real-Time Polymerase Chain Reaction ; Reproducibility of Results ; Signal Transduction ; Viral infections</subject><ispartof>PLoS neglected tropical diseases, 2011-11, Vol.5 (11), p.e1385-e1385</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>Behura et al. 2011</rights><rights>2011 Behura et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Behura SK, Gomez-Machorro C, Harker BW, deBruyn B, Lovin DD, et al. (2011) Global Cross-Talk of Genes of the Mosquito Aedes aegypti in Response to Dengue Virus Infection. PLoS Negl Trop Dis 5(11): e1385. doi:10.1371/journal.pntd.0001385</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-e80c59b54e07f942a1cac9231365adae081b9f5506df34239f00f3dfb211e47a3</citedby><cites>FETCH-LOGICAL-c661t-e80c59b54e07f942a1cac9231365adae081b9f5506df34239f00f3dfb211e47a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3216916/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3216916/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,37012,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22102922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>James, Anthony A.</contributor><creatorcontrib>Behura, Susanta K</creatorcontrib><creatorcontrib>Gomez-Machorro, Consuelo</creatorcontrib><creatorcontrib>Harker, Brent W</creatorcontrib><creatorcontrib>deBruyn, Becky</creatorcontrib><creatorcontrib>Lovin, Diane D</creatorcontrib><creatorcontrib>Hemme, Ryan R</creatorcontrib><creatorcontrib>Mori, Akio</creatorcontrib><creatorcontrib>Romero-Severson, Jeanne</creatorcontrib><creatorcontrib>Severson, David W</creatorcontrib><title>Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection</title><title>PLoS neglected tropical diseases</title><addtitle>PLoS Negl Trop Dis</addtitle><description>The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in humans, and DENV is the most important arbovirus across most of the subtropics and tropics worldwide. The early time periods after infection with DENV define critical cellular processes that determine ultimate success or failure of the virus to establish infection in the mosquito.
To identify genes involved in these processes, we performed genome-wide transcriptome profiling between susceptible and refractory A. aegypti strains at two critical early periods after challenging them with DENV. Genes that responded coordinately to DENV infection in the susceptible strain were largely clustered in one specific expression module, whereas in the refractory strain they were distributed in four distinct modules. The susceptible response module in the global transcriptional network showed significant biased representation with genes related to energy metabolism and DNA replication, whereas the refractory response modules showed biased representation across different metabolism pathway genes including cytochrome P450 and DDT [1,1,1-Trichloro-2,2-bis(4-chlorophenyl) ethane] degradation genes, and genes associated with cell growth and death. A common core set of coordinately expressed genes was observed in both the susceptible and refractory mosquitoes and included genes related to the Wnt (Wnt: wingless [wg] and integration 1 [int1] pathway), MAPK (Mitogen-activated protein kinase), mTOR (mammalian target of rapamycin) and JAK-STAT (Janus Kinase - Signal Transducer and Activator of Transcription) pathways.
Our data revealed extensive transcriptional networks of mosquito genes that are expressed in modular manners in response to DENV infection, and indicated that successfully defending against viral infection requires more elaborate gene networks than hosting the virus. These likely play important roles in the global-cross talk among the mosquito host factors during the critical early DENV infection periods that trigger the appropriate host action in susceptible vs. refractory mosquitoes.</description><subject>Aedes - genetics</subject><subject>Aedes - metabolism</subject><subject>Aedes - virology</subject><subject>Animals</subject><subject>Biology</subject><subject>Cluster Analysis</subject><subject>Dengue</subject><subject>Dengue - transmission</subject><subject>Dengue - virology</subject><subject>Dengue Virus - physiology</subject><subject>Disease susceptibility</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Genes, Insect</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>Insect Proteins - genetics</subject><subject>Insect Proteins - metabolism</subject><subject>Insect Vectors - genetics</subject><subject>Insect Vectors - metabolism</subject><subject>Insect Vectors - virology</subject><subject>Kinases</subject><subject>Mosquitoes</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Proteins</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Reproducibility of Results</subject><subject>Signal Transduction</subject><subject>Viral infections</subject><issn>1935-2735</issn><issn>1935-2727</issn><issn>1935-2735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptUl1rFDEUHUSxtfoPRAcEfdo1H5NM8lJYitZCwRd9NWQyd2azZpNtkin035vpbssuSB4S7j3nJPfkVNV7jJaYtvjrJkzRa7fc-dwvEUKYCvaiOseSsgVpKXt5dD6r3qS0QYhJJvDr6owQjIgk5Lz6c-1Cp11tYkhpkbX7W4ehHsFDmg95DfU2pLvJ5lCvoC9VDePDLtva-jpC2gWfoC7NHvw4QX1v45RKbwCTbfBvq1eDdgneHfaL6vf3b7-ufixuf17fXK1uF4ZznBcgkGGyYw2gdpAN0dhoIwnFlDPda0ACd3JgDPF-oA2hckBooP3QEYyhaTW9qD7udXcuJHWwJilMhMCIEkYL4maP6IPeqF20Wx0fVNBWPRZCHJWO2RoHSpgWCQFc8B41HMvOQMsZYEJEQ6luitbl4bap20JvwOeo3YnoacfbtRrDvaIEc4l5EfhyEIjhboKU1dYmA85pD2FKSiLGBW5kW5Cf9shRl5cVX0MRNDNarUjbUNRyPA-3_A-qrB621gQPgy31E8LnI8IatMvrFNw0_1k6BTZ74GNAIgzPU2Kk5hw-ma3mHKpDDgvtw7FDz6Sn4NF_El_Zuw</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Behura, Susanta K</creator><creator>Gomez-Machorro, Consuelo</creator><creator>Harker, Brent W</creator><creator>deBruyn, Becky</creator><creator>Lovin, Diane D</creator><creator>Hemme, Ryan R</creator><creator>Mori, Akio</creator><creator>Romero-Severson, Jeanne</creator><creator>Severson, David W</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111101</creationdate><title>Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection</title><author>Behura, Susanta K ; Gomez-Machorro, Consuelo ; Harker, Brent W ; deBruyn, Becky ; Lovin, Diane D ; Hemme, Ryan R ; Mori, Akio ; Romero-Severson, Jeanne ; Severson, David W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-e80c59b54e07f942a1cac9231365adae081b9f5506df34239f00f3dfb211e47a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aedes - genetics</topic><topic>Aedes - metabolism</topic><topic>Aedes - virology</topic><topic>Animals</topic><topic>Biology</topic><topic>Cluster Analysis</topic><topic>Dengue</topic><topic>Dengue - transmission</topic><topic>Dengue - virology</topic><topic>Dengue Virus - physiology</topic><topic>Disease susceptibility</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Genes, Insect</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>Insect Proteins - genetics</topic><topic>Insect Proteins - metabolism</topic><topic>Insect Vectors - genetics</topic><topic>Insect Vectors - metabolism</topic><topic>Insect Vectors - virology</topic><topic>Kinases</topic><topic>Mosquitoes</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Proteins</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Reproducibility of Results</topic><topic>Signal Transduction</topic><topic>Viral infections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behura, Susanta K</creatorcontrib><creatorcontrib>Gomez-Machorro, Consuelo</creatorcontrib><creatorcontrib>Harker, Brent W</creatorcontrib><creatorcontrib>deBruyn, Becky</creatorcontrib><creatorcontrib>Lovin, Diane D</creatorcontrib><creatorcontrib>Hemme, Ryan R</creatorcontrib><creatorcontrib>Mori, Akio</creatorcontrib><creatorcontrib>Romero-Severson, Jeanne</creatorcontrib><creatorcontrib>Severson, David W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS neglected tropical diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behura, Susanta K</au><au>Gomez-Machorro, Consuelo</au><au>Harker, Brent W</au><au>deBruyn, Becky</au><au>Lovin, Diane D</au><au>Hemme, Ryan R</au><au>Mori, Akio</au><au>Romero-Severson, Jeanne</au><au>Severson, David W</au><au>James, Anthony A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection</atitle><jtitle>PLoS neglected tropical diseases</jtitle><addtitle>PLoS Negl Trop Dis</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>5</volume><issue>11</issue><spage>e1385</spage><epage>e1385</epage><pages>e1385-e1385</pages><issn>1935-2735</issn><issn>1935-2727</issn><eissn>1935-2735</eissn><abstract>The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in humans, and DENV is the most important arbovirus across most of the subtropics and tropics worldwide. The early time periods after infection with DENV define critical cellular processes that determine ultimate success or failure of the virus to establish infection in the mosquito.
To identify genes involved in these processes, we performed genome-wide transcriptome profiling between susceptible and refractory A. aegypti strains at two critical early periods after challenging them with DENV. Genes that responded coordinately to DENV infection in the susceptible strain were largely clustered in one specific expression module, whereas in the refractory strain they were distributed in four distinct modules. The susceptible response module in the global transcriptional network showed significant biased representation with genes related to energy metabolism and DNA replication, whereas the refractory response modules showed biased representation across different metabolism pathway genes including cytochrome P450 and DDT [1,1,1-Trichloro-2,2-bis(4-chlorophenyl) ethane] degradation genes, and genes associated with cell growth and death. A common core set of coordinately expressed genes was observed in both the susceptible and refractory mosquitoes and included genes related to the Wnt (Wnt: wingless [wg] and integration 1 [int1] pathway), MAPK (Mitogen-activated protein kinase), mTOR (mammalian target of rapamycin) and JAK-STAT (Janus Kinase - Signal Transducer and Activator of Transcription) pathways.
Our data revealed extensive transcriptional networks of mosquito genes that are expressed in modular manners in response to DENV infection, and indicated that successfully defending against viral infection requires more elaborate gene networks than hosting the virus. These likely play important roles in the global-cross talk among the mosquito host factors during the critical early DENV infection periods that trigger the appropriate host action in susceptible vs. refractory mosquitoes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22102922</pmid><doi>10.1371/journal.pntd.0001385</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1935-2735 |
ispartof | PLoS neglected tropical diseases, 2011-11, Vol.5 (11), p.e1385-e1385 |
issn | 1935-2735 1935-2727 1935-2735 |
language | eng |
recordid | cdi_plos_journals_1288103253 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Aedes - genetics Aedes - metabolism Aedes - virology Animals Biology Cluster Analysis Dengue Dengue - transmission Dengue - virology Dengue Virus - physiology Disease susceptibility Female Gene expression Gene Expression Profiling Gene Expression Regulation Genes, Insect Genetic aspects Genomes Health aspects Host-Pathogen Interactions Humans Insect Proteins - genetics Insect Proteins - metabolism Insect Vectors - genetics Insect Vectors - metabolism Insect Vectors - virology Kinases Mosquitoes Oligonucleotide Array Sequence Analysis Proteins Real-Time Polymerase Chain Reaction Reproducibility of Results Signal Transduction Viral infections |
title | Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20cross-talk%20of%20genes%20of%20the%20mosquito%20Aedes%20aegypti%20in%20response%20to%20dengue%20virus%20infection&rft.jtitle=PLoS%20neglected%20tropical%20diseases&rft.au=Behura,%20Susanta%20K&rft.date=2011-11-01&rft.volume=5&rft.issue=11&rft.spage=e1385&rft.epage=e1385&rft.pages=e1385-e1385&rft.issn=1935-2735&rft.eissn=1935-2735&rft_id=info:doi/10.1371/journal.pntd.0001385&rft_dat=%3Cgale_plos_%3EA274307613%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c661t-e80c59b54e07f942a1cac9231365adae081b9f5506df34239f00f3dfb211e47a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=905681497&rft_id=info:pmid/22102922&rft_galeid=A274307613&rfr_iscdi=true |