Loading…
Mycolic acid modification by the mmaA4 gene of M. tuberculosis modulates IL-12 production
Mycobacterium tuberculosis has evolved many strategies to evade elimination by the host immune system, including the selective repression of macrophage IL-12p40 production. To identify the M. tuberculosis genes responsible for this aspect of immune evasion, we used a macrophage cell line expressing...
Saved in:
Published in: | PLoS pathogens 2008-06, Vol.4 (6), p.e1000081-e1000081 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mycobacterium tuberculosis has evolved many strategies to evade elimination by the host immune system, including the selective repression of macrophage IL-12p40 production. To identify the M. tuberculosis genes responsible for this aspect of immune evasion, we used a macrophage cell line expressing a reporter for IL-12p40 transcription to screen a transposon library of M. tuberculosis for mutants that lacked this function. This approach led to the identification of the mmaA4 gene, which encodes a methyl transferase required for introducing the distal oxygen-containing modifications of mycolic acids, as a key locus involved in the repression of IL-12p40. Mutants in which mmaA4 (hma) was inactivated stimulated macrophages to produce significantly more IL-12p40 and TNF-alpha than wild-type M. tuberculosis and were attenuated for virulence. This attenuation was not seen in IL-12p40-deficient mice, consistent with a direct linkage between enhanced stimulation of IL-12p40 by the mutant and its reduced virulence. Treatment of macrophages with trehalose dimycolate (TDM) purified from the DeltammaA4 mutant stimulated increased IL-12p40, similar to the increase observed from DeltammaA4 mutant-infected macrophages. In contrast, purified TDM isolated from wild-type M. tuberculosis inhibited production of IL-12p40 by macrophages. These findings strongly suggest that M. tuberculosis has evolved mmaA4-derived mycolic acids, including those incorporated into TDM to manipulate IL-12-mediated immunity and virulence. |
---|---|
ISSN: | 1553-7374 1553-7366 1553-7374 |
DOI: | 10.1371/journal.ppat.1000081 |