Loading…
A protective role for ELR+ chemokines during acute viral encephalomyelitis
The functional role of ELR-positive CXC chemokines in host defense during acute viral-induced encephalomyelitis was determined. Inoculation of the neurotropic JHM strain of mouse hepatitis virus (JHMV) into the central nervous system (CNS) of mice resulted in the rapid mobilization of PMNs expressin...
Saved in:
Published in: | PLoS pathogens 2009-11, Vol.5 (11), p.e1000648-e1000648 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6758-394e7e62eb4da8e1dd0ba90f39d8a811a35765df78abbdada4b6627d4d7b370a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c6758-394e7e62eb4da8e1dd0ba90f39d8a811a35765df78abbdada4b6627d4d7b370a3 |
container_end_page | e1000648 |
container_issue | 11 |
container_start_page | e1000648 |
container_title | PLoS pathogens |
container_volume | 5 |
creator | Hosking, Martin P Liu, Liping Ransohoff, Richard M Lane, Thomas E |
description | The functional role of ELR-positive CXC chemokines in host defense during acute viral-induced encephalomyelitis was determined. Inoculation of the neurotropic JHM strain of mouse hepatitis virus (JHMV) into the central nervous system (CNS) of mice resulted in the rapid mobilization of PMNs expressing the chemokine receptor CXCR2 into the blood. Migration of PMNs to the CNS coincided with increased expression of transcripts specific for the CXCR2 ELR-positive chemokine ligands CXCL1, CXCL2, and CXCL5 within the brain. Treatment of JHMV-infected mice with anti-CXCR2 blocking antibody reduced PMN trafficking into the CNS by >95%, dampened MMP-9 activity, and abrogated blood-brain-barrier (BBB) breakdown. Correspondingly, CXCR2 neutralization resulted in diminished infiltration of virus-specific T cells, an inability to control viral replication within the brain, and 100% mortality. Blocking CXCR2 signaling did not impair the generation of virus-specific T cells, indicating that CXCR2 is not required to tailor anti-JHMV T cell responses. Evaluation of mice in which CXCR2 is genetically silenced (CXCR2-/- mice) confirmed that PMNs neither expressed CXCR2 nor migrated in response to ligands CXCL1, CXCL2, or CXCL5 in an in vitro chemotaxis assay. Moreover, JHMV infection of CXCR2-/- mice resulted in an approximate 60% reduction of PMN migration into the CNS, yet these mice survived infection and controlled viral replication within the brain. Treatment of JHMV-infected CXCR2-/- mice with anti-CXCR2 antibody did not modulate PMN migration nor alter viral clearance or mortality, indicating the existence of compensatory mechanisms that facilitate sufficient migration of PMNs into the CNS in the absence of CXCR2. Collectively, these findings highlight a previously unappreciated role for ELR-positive chemokines in enhancing host defense during acute viral infections of the CNS. |
doi_str_mv | 10.1371/journal.ppat.1000648 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289057949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A213958406</galeid><doaj_id>oai_doaj_org_article_efb53c562ca747278847701e938a0d16</doaj_id><sourcerecordid>A213958406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6758-394e7e62eb4da8e1dd0ba90f39d8a811a35765df78abbdada4b6627d4d7b370a3</originalsourceid><addsrcrecordid>eNqVkm-L1DAQxoso3nn6DUQLgiKya_4nfSMsx6kri8Kpr0OaTHeztk0vaRfv29u9rXoLIkpeJEx-8yQz82TZY4zmmEr8ehuG2Jp63nWmn2OEkGDqTnaKOaczSSW7e-t8kj1IaYsQwxSL-9kJLlRBBaGn2YdF3sXQg-39DvIYasirEPOL1eWr3G6gCd98Cyl3Q_TtOjd26CHf-WjqHFoL3cbUobmG2vc-PczuVaZO8Gjaz7Kvby--nL-frT69W54vVjMrJFczWjCQIAiUzBkF2DlUmgJVtHDKKIwN5VJwV0llytIZZ1gpBJGOOVlSiQw9y54edLs6JD21IWlMVIG4LFgxEssD4YLZ6i76xsRrHYzXN4EQ19rE3tsaNFQlp5YLYo1kkkilmJQIQ0GVQQ6LUevN9NpQNuAstP1Y_ZHo8U3rN3oddppIIRDHo8CLSSCGqwFSrxufLNS1aSEMSUvKMBGCq5F8_leSYCYI4eJfQC4p2oPPDuDajLX6tgrjF-0e1guCacEVu6Hmf6DG5aDxNrRQ-TF-lPDyKGFkevjer82Qkl5-vvwP9uMxyw6sjSGlCNWvNmOk96b_OW29N72eTD-mPbk9ot9Jk8vpD2uO_LU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21457306</pqid></control><display><type>article</type><title>A protective role for ELR+ chemokines during acute viral encephalomyelitis</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Hosking, Martin P ; Liu, Liping ; Ransohoff, Richard M ; Lane, Thomas E</creator><contributor>Cullen, Bryan R.</contributor><creatorcontrib>Hosking, Martin P ; Liu, Liping ; Ransohoff, Richard M ; Lane, Thomas E ; Cullen, Bryan R.</creatorcontrib><description>The functional role of ELR-positive CXC chemokines in host defense during acute viral-induced encephalomyelitis was determined. Inoculation of the neurotropic JHM strain of mouse hepatitis virus (JHMV) into the central nervous system (CNS) of mice resulted in the rapid mobilization of PMNs expressing the chemokine receptor CXCR2 into the blood. Migration of PMNs to the CNS coincided with increased expression of transcripts specific for the CXCR2 ELR-positive chemokine ligands CXCL1, CXCL2, and CXCL5 within the brain. Treatment of JHMV-infected mice with anti-CXCR2 blocking antibody reduced PMN trafficking into the CNS by >95%, dampened MMP-9 activity, and abrogated blood-brain-barrier (BBB) breakdown. Correspondingly, CXCR2 neutralization resulted in diminished infiltration of virus-specific T cells, an inability to control viral replication within the brain, and 100% mortality. Blocking CXCR2 signaling did not impair the generation of virus-specific T cells, indicating that CXCR2 is not required to tailor anti-JHMV T cell responses. Evaluation of mice in which CXCR2 is genetically silenced (CXCR2-/- mice) confirmed that PMNs neither expressed CXCR2 nor migrated in response to ligands CXCL1, CXCL2, or CXCL5 in an in vitro chemotaxis assay. Moreover, JHMV infection of CXCR2-/- mice resulted in an approximate 60% reduction of PMN migration into the CNS, yet these mice survived infection and controlled viral replication within the brain. Treatment of JHMV-infected CXCR2-/- mice with anti-CXCR2 antibody did not modulate PMN migration nor alter viral clearance or mortality, indicating the existence of compensatory mechanisms that facilitate sufficient migration of PMNs into the CNS in the absence of CXCR2. Collectively, these findings highlight a previously unappreciated role for ELR-positive chemokines in enhancing host defense during acute viral infections of the CNS.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1000648</identifier><identifier>PMID: 19893623</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acute Disease ; Animals ; Bacterial infections ; Brain ; Brain Chemistry ; Chemokine CXCL1 ; Chemokine CXCL2 ; Chemokine CXCL5 ; Chemokines ; Chemokines, CXC - biosynthesis ; Chemokines, CXC - immunology ; Encephalomyelitis ; Encephalomyelitis - immunology ; Encephalomyelitis - virology ; Experiments ; Health aspects ; Hepatitis ; Immune response ; Ligands ; Lymphocytes ; Mice ; Mice, Knockout ; Migration ; Mortality ; Murine hepatitis virus ; Neutrophil Infiltration - immunology ; Poliovirus ; Receptors, Interleukin-8B - deficiency ; Receptors, Interleukin-8B - immunology ; Risk factors ; Rodents ; T-Lymphocytes - immunology ; Viral infections ; Virology/Animal Models of Infection ; Virus Replication</subject><ispartof>PLoS pathogens, 2009-11, Vol.5 (11), p.e1000648-e1000648</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>Hosking et al. 2009</rights><rights>2009 Hosking et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Hosking MP, Liu L, Ransohoff RM, Lane TE (2009) A Protective Role for ELR+ Chemokines during Acute Viral Encephalomyelitis. PLoS Pathog 5(11): e1000648. doi:10.1371/journal.ppat.1000648</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6758-394e7e62eb4da8e1dd0ba90f39d8a811a35765df78abbdada4b6627d4d7b370a3</citedby><cites>FETCH-LOGICAL-c6758-394e7e62eb4da8e1dd0ba90f39d8a811a35765df78abbdada4b6627d4d7b370a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766051/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766051/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,36992,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19893623$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cullen, Bryan R.</contributor><creatorcontrib>Hosking, Martin P</creatorcontrib><creatorcontrib>Liu, Liping</creatorcontrib><creatorcontrib>Ransohoff, Richard M</creatorcontrib><creatorcontrib>Lane, Thomas E</creatorcontrib><title>A protective role for ELR+ chemokines during acute viral encephalomyelitis</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>The functional role of ELR-positive CXC chemokines in host defense during acute viral-induced encephalomyelitis was determined. Inoculation of the neurotropic JHM strain of mouse hepatitis virus (JHMV) into the central nervous system (CNS) of mice resulted in the rapid mobilization of PMNs expressing the chemokine receptor CXCR2 into the blood. Migration of PMNs to the CNS coincided with increased expression of transcripts specific for the CXCR2 ELR-positive chemokine ligands CXCL1, CXCL2, and CXCL5 within the brain. Treatment of JHMV-infected mice with anti-CXCR2 blocking antibody reduced PMN trafficking into the CNS by >95%, dampened MMP-9 activity, and abrogated blood-brain-barrier (BBB) breakdown. Correspondingly, CXCR2 neutralization resulted in diminished infiltration of virus-specific T cells, an inability to control viral replication within the brain, and 100% mortality. Blocking CXCR2 signaling did not impair the generation of virus-specific T cells, indicating that CXCR2 is not required to tailor anti-JHMV T cell responses. Evaluation of mice in which CXCR2 is genetically silenced (CXCR2-/- mice) confirmed that PMNs neither expressed CXCR2 nor migrated in response to ligands CXCL1, CXCL2, or CXCL5 in an in vitro chemotaxis assay. Moreover, JHMV infection of CXCR2-/- mice resulted in an approximate 60% reduction of PMN migration into the CNS, yet these mice survived infection and controlled viral replication within the brain. Treatment of JHMV-infected CXCR2-/- mice with anti-CXCR2 antibody did not modulate PMN migration nor alter viral clearance or mortality, indicating the existence of compensatory mechanisms that facilitate sufficient migration of PMNs into the CNS in the absence of CXCR2. Collectively, these findings highlight a previously unappreciated role for ELR-positive chemokines in enhancing host defense during acute viral infections of the CNS.</description><subject>Acute Disease</subject><subject>Animals</subject><subject>Bacterial infections</subject><subject>Brain</subject><subject>Brain Chemistry</subject><subject>Chemokine CXCL1</subject><subject>Chemokine CXCL2</subject><subject>Chemokine CXCL5</subject><subject>Chemokines</subject><subject>Chemokines, CXC - biosynthesis</subject><subject>Chemokines, CXC - immunology</subject><subject>Encephalomyelitis</subject><subject>Encephalomyelitis - immunology</subject><subject>Encephalomyelitis - virology</subject><subject>Experiments</subject><subject>Health aspects</subject><subject>Hepatitis</subject><subject>Immune response</subject><subject>Ligands</subject><subject>Lymphocytes</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Migration</subject><subject>Mortality</subject><subject>Murine hepatitis virus</subject><subject>Neutrophil Infiltration - immunology</subject><subject>Poliovirus</subject><subject>Receptors, Interleukin-8B - deficiency</subject><subject>Receptors, Interleukin-8B - immunology</subject><subject>Risk factors</subject><subject>Rodents</subject><subject>T-Lymphocytes - immunology</subject><subject>Viral infections</subject><subject>Virology/Animal Models of Infection</subject><subject>Virus Replication</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVkm-L1DAQxoso3nn6DUQLgiKya_4nfSMsx6kri8Kpr0OaTHeztk0vaRfv29u9rXoLIkpeJEx-8yQz82TZY4zmmEr8ehuG2Jp63nWmn2OEkGDqTnaKOaczSSW7e-t8kj1IaYsQwxSL-9kJLlRBBaGn2YdF3sXQg-39DvIYasirEPOL1eWr3G6gCd98Cyl3Q_TtOjd26CHf-WjqHFoL3cbUobmG2vc-PczuVaZO8Gjaz7Kvby--nL-frT69W54vVjMrJFczWjCQIAiUzBkF2DlUmgJVtHDKKIwN5VJwV0llytIZZ1gpBJGOOVlSiQw9y54edLs6JD21IWlMVIG4LFgxEssD4YLZ6i76xsRrHYzXN4EQ19rE3tsaNFQlp5YLYo1kkkilmJQIQ0GVQQ6LUevN9NpQNuAstP1Y_ZHo8U3rN3oddppIIRDHo8CLSSCGqwFSrxufLNS1aSEMSUvKMBGCq5F8_leSYCYI4eJfQC4p2oPPDuDajLX6tgrjF-0e1guCacEVu6Hmf6DG5aDxNrRQ-TF-lPDyKGFkevjer82Qkl5-vvwP9uMxyw6sjSGlCNWvNmOk96b_OW29N72eTD-mPbk9ot9Jk8vpD2uO_LU</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Hosking, Martin P</creator><creator>Liu, Liping</creator><creator>Ransohoff, Richard M</creator><creator>Lane, Thomas E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7T5</scope><scope>7TK</scope><scope>7U9</scope><scope>H94</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>200911</creationdate><title>A protective role for ELR+ chemokines during acute viral encephalomyelitis</title><author>Hosking, Martin P ; Liu, Liping ; Ransohoff, Richard M ; Lane, Thomas E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6758-394e7e62eb4da8e1dd0ba90f39d8a811a35765df78abbdada4b6627d4d7b370a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acute Disease</topic><topic>Animals</topic><topic>Bacterial infections</topic><topic>Brain</topic><topic>Brain Chemistry</topic><topic>Chemokine CXCL1</topic><topic>Chemokine CXCL2</topic><topic>Chemokine CXCL5</topic><topic>Chemokines</topic><topic>Chemokines, CXC - biosynthesis</topic><topic>Chemokines, CXC - immunology</topic><topic>Encephalomyelitis</topic><topic>Encephalomyelitis - immunology</topic><topic>Encephalomyelitis - virology</topic><topic>Experiments</topic><topic>Health aspects</topic><topic>Hepatitis</topic><topic>Immune response</topic><topic>Ligands</topic><topic>Lymphocytes</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Migration</topic><topic>Mortality</topic><topic>Murine hepatitis virus</topic><topic>Neutrophil Infiltration - immunology</topic><topic>Poliovirus</topic><topic>Receptors, Interleukin-8B - deficiency</topic><topic>Receptors, Interleukin-8B - immunology</topic><topic>Risk factors</topic><topic>Rodents</topic><topic>T-Lymphocytes - immunology</topic><topic>Viral infections</topic><topic>Virology/Animal Models of Infection</topic><topic>Virus Replication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosking, Martin P</creatorcontrib><creatorcontrib>Liu, Liping</creatorcontrib><creatorcontrib>Ransohoff, Richard M</creatorcontrib><creatorcontrib>Lane, Thomas E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals - May need to register for free articles</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosking, Martin P</au><au>Liu, Liping</au><au>Ransohoff, Richard M</au><au>Lane, Thomas E</au><au>Cullen, Bryan R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A protective role for ELR+ chemokines during acute viral encephalomyelitis</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2009-11</date><risdate>2009</risdate><volume>5</volume><issue>11</issue><spage>e1000648</spage><epage>e1000648</epage><pages>e1000648-e1000648</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>The functional role of ELR-positive CXC chemokines in host defense during acute viral-induced encephalomyelitis was determined. Inoculation of the neurotropic JHM strain of mouse hepatitis virus (JHMV) into the central nervous system (CNS) of mice resulted in the rapid mobilization of PMNs expressing the chemokine receptor CXCR2 into the blood. Migration of PMNs to the CNS coincided with increased expression of transcripts specific for the CXCR2 ELR-positive chemokine ligands CXCL1, CXCL2, and CXCL5 within the brain. Treatment of JHMV-infected mice with anti-CXCR2 blocking antibody reduced PMN trafficking into the CNS by >95%, dampened MMP-9 activity, and abrogated blood-brain-barrier (BBB) breakdown. Correspondingly, CXCR2 neutralization resulted in diminished infiltration of virus-specific T cells, an inability to control viral replication within the brain, and 100% mortality. Blocking CXCR2 signaling did not impair the generation of virus-specific T cells, indicating that CXCR2 is not required to tailor anti-JHMV T cell responses. Evaluation of mice in which CXCR2 is genetically silenced (CXCR2-/- mice) confirmed that PMNs neither expressed CXCR2 nor migrated in response to ligands CXCL1, CXCL2, or CXCL5 in an in vitro chemotaxis assay. Moreover, JHMV infection of CXCR2-/- mice resulted in an approximate 60% reduction of PMN migration into the CNS, yet these mice survived infection and controlled viral replication within the brain. Treatment of JHMV-infected CXCR2-/- mice with anti-CXCR2 antibody did not modulate PMN migration nor alter viral clearance or mortality, indicating the existence of compensatory mechanisms that facilitate sufficient migration of PMNs into the CNS in the absence of CXCR2. Collectively, these findings highlight a previously unappreciated role for ELR-positive chemokines in enhancing host defense during acute viral infections of the CNS.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19893623</pmid><doi>10.1371/journal.ppat.1000648</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2009-11, Vol.5 (11), p.e1000648-e1000648 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_1289057949 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Acute Disease Animals Bacterial infections Brain Brain Chemistry Chemokine CXCL1 Chemokine CXCL2 Chemokine CXCL5 Chemokines Chemokines, CXC - biosynthesis Chemokines, CXC - immunology Encephalomyelitis Encephalomyelitis - immunology Encephalomyelitis - virology Experiments Health aspects Hepatitis Immune response Ligands Lymphocytes Mice Mice, Knockout Migration Mortality Murine hepatitis virus Neutrophil Infiltration - immunology Poliovirus Receptors, Interleukin-8B - deficiency Receptors, Interleukin-8B - immunology Risk factors Rodents T-Lymphocytes - immunology Viral infections Virology/Animal Models of Infection Virus Replication |
title | A protective role for ELR+ chemokines during acute viral encephalomyelitis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20protective%20role%20for%20ELR+%20chemokines%20during%20acute%20viral%20encephalomyelitis&rft.jtitle=PLoS%20pathogens&rft.au=Hosking,%20Martin%20P&rft.date=2009-11&rft.volume=5&rft.issue=11&rft.spage=e1000648&rft.epage=e1000648&rft.pages=e1000648-e1000648&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1000648&rft_dat=%3Cgale_plos_%3EA213958406%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6758-394e7e62eb4da8e1dd0ba90f39d8a811a35765df78abbdada4b6627d4d7b370a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=21457306&rft_id=info:pmid/19893623&rft_galeid=A213958406&rfr_iscdi=true |