Loading…

Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola

Meiosis in the haploid plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack hom...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2009-06, Vol.4 (6), p.e5863
Main Authors: Wittenberg, A.H.J, Lee, T.A.J. van der, Ben M'Barek, S, Ware, S.B, Goodwin, S.B, Kilian, A, Visser, R.G.F, Kema, G.H.J, Schouten, H.J
Format: Article
Language:English
Subjects:
DNA
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c815t-62798d2db4880f892978b4427057bb37aba7be75111809c9e3d71151fb3d6dd23
cites
container_end_page
container_issue 6
container_start_page e5863
container_title PloS one
container_volume 4
creator Wittenberg, A.H.J
Lee, T.A.J. van der
Ben M'Barek, S
Ware, S.B
Goodwin, S.B
Kilian, A
Visser, R.G.F
Kema, G.H.J
Schouten, H.J
description Meiosis in the haploid plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs and do not pair during meiosis. Because these chromosomes are not present universally in the genome of the organism they can be considered to be dispensable. To analyze the meiotic transmission of unequal chromosome numbers, two segregating populations were generated by crossing genetically unrelated parent isolates originating from Algeria and The Netherlands that had pathogenicity towards durum or bread wheat, respectively. Detailed genetic analyses of these progenies using high-density mapping (1793 DArT, 258 AFLP and 25 SSR markers) and graphical genotyping revealed that M. graminicola has up to eight dispensable chromosomes, the highest number reported in filamentous fungi. These chromosomes vary from 0.39 to 0.77 Mb in size, and represent up to 38% of the chromosomal complement. Chromosome numbers among progeny isolates varied widely, with some progeny missing up to three chromosomes, while other strains were disomic for one or more chromosomes. Between 15-20% of the progeny isolates lacked one or more chromosomes that were present in both parents. The two high-density maps showed no recombination of dispensable chromosomes and hence, their meiotic processing may require distributive disjunction, a phenomenon that is rarely observed in fungi. The maps also enabled the identification of individual twin isolates from a single ascus that shared the same missing or doubled chromosomes indicating that the chromosomal polymorphisms were mitotically stable and originated from nondisjunction during the second division and, less frequently, during the first division of fungal meiosis. High genome plasticity could be among the strategies enabling this versatile pathogen to quickly overcome adverse biotic and abiotic conditions in wheat fields.
doi_str_mv 10.1371/journal.pone.0005863
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289135061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473081370</galeid><doaj_id>oai_doaj_org_article_aa814fe8dadf4153995287125b89dc59</doaj_id><sourcerecordid>A473081370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c815t-62798d2db4880f892978b4427057bb37aba7be75111809c9e3d71151fb3d6dd23</originalsourceid><addsrcrecordid>eNqNk2tr1jAUx4sobk6_gZeiMPDFHnNp2sQXwhheBpsDb29D2qRtRp6kS9rNfXtP10fdIyJSaEvyO_-cc_45WfYYoxWmFX51HqbolVsNwZsVQojxkt7JdrGg5KAkiN699b-TPUjpHBjKy_J-toMFwyUXfDfzp8aGZFOuo700KTffx6hC1NareJ13xoe1yQen0mgbO17n1udjb_JeDS5YnbeT75SbAT_mgxr7ACH56XUT0tArE41zKu-iWltvm-DUw-xeq1wyjzbfvezru7dfjj4cnJy9Pz46PDloOGYj5FwJromuC85RywURFa-LglSIVXVNK1WrqjYVwxhzJBphqK4wZritqS61JnQve7boQppJblqVJCZcYMpQiYE4Xggd1Lkcol1DwTIoK28WQuykilC0M1IpjovWcK10W2BGhWCEV5iwmgvdMAFarxetKwXlWw8vCf1rbLoRdLaOs_jVFKV382eY6iQpR0VZQPCbTapTvTa6MR4ccFsZbe9428suXEoCDpaEgsDzRSCASTKBTabpm-C9aUaJoZW0mk_Z35wSw8Vk0ijXNjWzPd6EKUnIpChKuEJ72Ys_wL93b7VQ4L6R1rcBUmvg0WYNRnvTWlg_LCqKONxWBAEvtwKAGeGudWpKSR5__vT_7Nm3bXb_Ftsb5cY-BTeNNvi0DRYL2MSQUjTtrw5jJOeB-lmnnAdKbgYKwp7edud30GaCAHiyAK0KUnURPP94QhAmiDCCyn_sI8EYpz8A3vIvqA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289135061</pqid></control><display><type>article</type><title>Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Wittenberg, A.H.J ; Lee, T.A.J. van der ; Ben M'Barek, S ; Ware, S.B ; Goodwin, S.B ; Kilian, A ; Visser, R.G.F ; Kema, G.H.J ; Schouten, H.J</creator><creatorcontrib>Wittenberg, A.H.J ; Lee, T.A.J. van der ; Ben M'Barek, S ; Ware, S.B ; Goodwin, S.B ; Kilian, A ; Visser, R.G.F ; Kema, G.H.J ; Schouten, H.J ; USDOE Joint Genome Institute (JGI), Berkeley, CA (United States)</creatorcontrib><description>Meiosis in the haploid plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs and do not pair during meiosis. Because these chromosomes are not present universally in the genome of the organism they can be considered to be dispensable. To analyze the meiotic transmission of unequal chromosome numbers, two segregating populations were generated by crossing genetically unrelated parent isolates originating from Algeria and The Netherlands that had pathogenicity towards durum or bread wheat, respectively. Detailed genetic analyses of these progenies using high-density mapping (1793 DArT, 258 AFLP and 25 SSR markers) and graphical genotyping revealed that M. graminicola has up to eight dispensable chromosomes, the highest number reported in filamentous fungi. These chromosomes vary from 0.39 to 0.77 Mb in size, and represent up to 38% of the chromosomal complement. Chromosome numbers among progeny isolates varied widely, with some progeny missing up to three chromosomes, while other strains were disomic for one or more chromosomes. Between 15-20% of the progeny isolates lacked one or more chromosomes that were present in both parents. The two high-density maps showed no recombination of dispensable chromosomes and hence, their meiotic processing may require distributive disjunction, a phenomenon that is rarely observed in fungi. The maps also enabled the identification of individual twin isolates from a single ascus that shared the same missing or doubled chromosomes indicating that the chromosomal polymorphisms were mitotically stable and originated from nondisjunction during the second division and, less frequently, during the first division of fungal meiosis. High genome plasticity could be among the strategies enabling this versatile pathogen to quickly overcome adverse biotic and abiotic conditions in wheat fields.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0005863</identifier><identifier>PMID: 19516898</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algeria ; Amplified fragment length polymorphism ; Analysis ; Antibiotics ; Asci ; Ascomycota - genetics ; Ascomycota - physiology ; Ascospores ; BASIC BIOLOGICAL SCIENCES ; Biointeracties and Plant Health ; Bread ; Chromosome Mapping ; chromosome number ; chromosome transmission ; Chromosomes ; Chromosomes, Fungal ; Crosses, Genetic ; crossing ; Deoxyribonucleic acid ; diploidy ; Disjunction ; DNA ; Domestication ; Drug resistance ; durum wheat ; EPS-4 ; Fungi ; Gene mapping ; Genes ; Genes, Fungal ; Genetic crosses ; Genetic diversity ; Genetic Linkage ; Genetic Markers ; Genetic polymorphisms ; Genetics and Genomics/Chromosome Biology ; Genetics and Genomics/Genome Projects ; Genetics and Genomics/Microbial Evolution and Genomics ; genome ; Genome, Fungal ; Genomes ; Genomics ; Genotyping ; haploidy ; Homologous recombination ; Homology ; Laboratories ; Laboratorium voor Fytopathologie ; Laboratorium voor Phytopathologie ; Laboratorium voor Plantenveredeling ; Laboratory of Phytopathology ; Laboratory of Plant Breeding ; leaf blotch ; Meiosis ; meiotic drive ; microbial genetics ; Microbiology/Plant-Biotic Interactions ; microsatellite repeats ; Models, Genetic ; Mycosphaerella graminicola ; Netherlands ; Nondisjunction ; Offspring ; Parents ; Pathogenicity ; Pathogens ; Plant Breeding ; plant pathogenic fungi ; Plant sciences ; Plants - microbiology ; Plastic properties ; Plasticity ; Polymerase Chain Reaction ; PRI Biodiversiteit en Veredeling ; PRI Biodiversity and Breeding ; PRI Biointeractions en Plantgezondheid ; Progeny ; Science &amp; Technology - Other Topics ; Sequence Analysis, DNA ; strains ; Studies ; Translocation, Genetic ; Triticum aestivum ; Triticum turgidum subsp. durum ; Wheat</subject><ispartof>PloS one, 2009-06, Vol.4 (6), p.e5863</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2009</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c815t-62798d2db4880f892978b4427057bb37aba7be75111809c9e3d71151fb3d6dd23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1289135061/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1289135061?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19516898$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1627374$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wittenberg, A.H.J</creatorcontrib><creatorcontrib>Lee, T.A.J. van der</creatorcontrib><creatorcontrib>Ben M'Barek, S</creatorcontrib><creatorcontrib>Ware, S.B</creatorcontrib><creatorcontrib>Goodwin, S.B</creatorcontrib><creatorcontrib>Kilian, A</creatorcontrib><creatorcontrib>Visser, R.G.F</creatorcontrib><creatorcontrib>Kema, G.H.J</creatorcontrib><creatorcontrib>Schouten, H.J</creatorcontrib><creatorcontrib>USDOE Joint Genome Institute (JGI), Berkeley, CA (United States)</creatorcontrib><title>Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Meiosis in the haploid plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs and do not pair during meiosis. Because these chromosomes are not present universally in the genome of the organism they can be considered to be dispensable. To analyze the meiotic transmission of unequal chromosome numbers, two segregating populations were generated by crossing genetically unrelated parent isolates originating from Algeria and The Netherlands that had pathogenicity towards durum or bread wheat, respectively. Detailed genetic analyses of these progenies using high-density mapping (1793 DArT, 258 AFLP and 25 SSR markers) and graphical genotyping revealed that M. graminicola has up to eight dispensable chromosomes, the highest number reported in filamentous fungi. These chromosomes vary from 0.39 to 0.77 Mb in size, and represent up to 38% of the chromosomal complement. Chromosome numbers among progeny isolates varied widely, with some progeny missing up to three chromosomes, while other strains were disomic for one or more chromosomes. Between 15-20% of the progeny isolates lacked one or more chromosomes that were present in both parents. The two high-density maps showed no recombination of dispensable chromosomes and hence, their meiotic processing may require distributive disjunction, a phenomenon that is rarely observed in fungi. The maps also enabled the identification of individual twin isolates from a single ascus that shared the same missing or doubled chromosomes indicating that the chromosomal polymorphisms were mitotically stable and originated from nondisjunction during the second division and, less frequently, during the first division of fungal meiosis. High genome plasticity could be among the strategies enabling this versatile pathogen to quickly overcome adverse biotic and abiotic conditions in wheat fields.</description><subject>Algeria</subject><subject>Amplified fragment length polymorphism</subject><subject>Analysis</subject><subject>Antibiotics</subject><subject>Asci</subject><subject>Ascomycota - genetics</subject><subject>Ascomycota - physiology</subject><subject>Ascospores</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biointeracties and Plant Health</subject><subject>Bread</subject><subject>Chromosome Mapping</subject><subject>chromosome number</subject><subject>chromosome transmission</subject><subject>Chromosomes</subject><subject>Chromosomes, Fungal</subject><subject>Crosses, Genetic</subject><subject>crossing</subject><subject>Deoxyribonucleic acid</subject><subject>diploidy</subject><subject>Disjunction</subject><subject>DNA</subject><subject>Domestication</subject><subject>Drug resistance</subject><subject>durum wheat</subject><subject>EPS-4</subject><subject>Fungi</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genes, Fungal</subject><subject>Genetic crosses</subject><subject>Genetic diversity</subject><subject>Genetic Linkage</subject><subject>Genetic Markers</subject><subject>Genetic polymorphisms</subject><subject>Genetics and Genomics/Chromosome Biology</subject><subject>Genetics and Genomics/Genome Projects</subject><subject>Genetics and Genomics/Microbial Evolution and Genomics</subject><subject>genome</subject><subject>Genome, Fungal</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotyping</subject><subject>haploidy</subject><subject>Homologous recombination</subject><subject>Homology</subject><subject>Laboratories</subject><subject>Laboratorium voor Fytopathologie</subject><subject>Laboratorium voor Phytopathologie</subject><subject>Laboratorium voor Plantenveredeling</subject><subject>Laboratory of Phytopathology</subject><subject>Laboratory of Plant Breeding</subject><subject>leaf blotch</subject><subject>Meiosis</subject><subject>meiotic drive</subject><subject>microbial genetics</subject><subject>Microbiology/Plant-Biotic Interactions</subject><subject>microsatellite repeats</subject><subject>Models, Genetic</subject><subject>Mycosphaerella graminicola</subject><subject>Netherlands</subject><subject>Nondisjunction</subject><subject>Offspring</subject><subject>Parents</subject><subject>Pathogenicity</subject><subject>Pathogens</subject><subject>Plant Breeding</subject><subject>plant pathogenic fungi</subject><subject>Plant sciences</subject><subject>Plants - microbiology</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Polymerase Chain Reaction</subject><subject>PRI Biodiversiteit en Veredeling</subject><subject>PRI Biodiversity and Breeding</subject><subject>PRI Biointeractions en Plantgezondheid</subject><subject>Progeny</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Sequence Analysis, DNA</subject><subject>strains</subject><subject>Studies</subject><subject>Translocation, Genetic</subject><subject>Triticum aestivum</subject><subject>Triticum turgidum subsp. durum</subject><subject>Wheat</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk2tr1jAUx4sobk6_gZeiMPDFHnNp2sQXwhheBpsDb29D2qRtRp6kS9rNfXtP10fdIyJSaEvyO_-cc_45WfYYoxWmFX51HqbolVsNwZsVQojxkt7JdrGg5KAkiN699b-TPUjpHBjKy_J-toMFwyUXfDfzp8aGZFOuo700KTffx6hC1NareJ13xoe1yQen0mgbO17n1udjb_JeDS5YnbeT75SbAT_mgxr7ACH56XUT0tArE41zKu-iWltvm-DUw-xeq1wyjzbfvezru7dfjj4cnJy9Pz46PDloOGYj5FwJromuC85RywURFa-LglSIVXVNK1WrqjYVwxhzJBphqK4wZritqS61JnQve7boQppJblqVJCZcYMpQiYE4Xggd1Lkcol1DwTIoK28WQuykilC0M1IpjovWcK10W2BGhWCEV5iwmgvdMAFarxetKwXlWw8vCf1rbLoRdLaOs_jVFKV382eY6iQpR0VZQPCbTapTvTa6MR4ccFsZbe9428suXEoCDpaEgsDzRSCASTKBTabpm-C9aUaJoZW0mk_Z35wSw8Vk0ijXNjWzPd6EKUnIpChKuEJ72Ys_wL93b7VQ4L6R1rcBUmvg0WYNRnvTWlg_LCqKONxWBAEvtwKAGeGudWpKSR5__vT_7Nm3bXb_Ftsb5cY-BTeNNvi0DRYL2MSQUjTtrw5jJOeB-lmnnAdKbgYKwp7edud30GaCAHiyAK0KUnURPP94QhAmiDCCyn_sI8EYpz8A3vIvqA</recordid><startdate>20090610</startdate><enddate>20090610</enddate><creator>Wittenberg, A.H.J</creator><creator>Lee, T.A.J. van der</creator><creator>Ben M'Barek, S</creator><creator>Ware, S.B</creator><creator>Goodwin, S.B</creator><creator>Kilian, A</creator><creator>Visser, R.G.F</creator><creator>Kema, G.H.J</creator><creator>Schouten, H.J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>QVL</scope><scope>DOA</scope></search><sort><creationdate>20090610</creationdate><title>Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola</title><author>Wittenberg, A.H.J ; Lee, T.A.J. van der ; Ben M'Barek, S ; Ware, S.B ; Goodwin, S.B ; Kilian, A ; Visser, R.G.F ; Kema, G.H.J ; Schouten, H.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c815t-62798d2db4880f892978b4427057bb37aba7be75111809c9e3d71151fb3d6dd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algeria</topic><topic>Amplified fragment length polymorphism</topic><topic>Analysis</topic><topic>Antibiotics</topic><topic>Asci</topic><topic>Ascomycota - genetics</topic><topic>Ascomycota - physiology</topic><topic>Ascospores</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biointeracties and Plant Health</topic><topic>Bread</topic><topic>Chromosome Mapping</topic><topic>chromosome number</topic><topic>chromosome transmission</topic><topic>Chromosomes</topic><topic>Chromosomes, Fungal</topic><topic>Crosses, Genetic</topic><topic>crossing</topic><topic>Deoxyribonucleic acid</topic><topic>diploidy</topic><topic>Disjunction</topic><topic>DNA</topic><topic>Domestication</topic><topic>Drug resistance</topic><topic>durum wheat</topic><topic>EPS-4</topic><topic>Fungi</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genes, Fungal</topic><topic>Genetic crosses</topic><topic>Genetic diversity</topic><topic>Genetic Linkage</topic><topic>Genetic Markers</topic><topic>Genetic polymorphisms</topic><topic>Genetics and Genomics/Chromosome Biology</topic><topic>Genetics and Genomics/Genome Projects</topic><topic>Genetics and Genomics/Microbial Evolution and Genomics</topic><topic>genome</topic><topic>Genome, Fungal</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotyping</topic><topic>haploidy</topic><topic>Homologous recombination</topic><topic>Homology</topic><topic>Laboratories</topic><topic>Laboratorium voor Fytopathologie</topic><topic>Laboratorium voor Phytopathologie</topic><topic>Laboratorium voor Plantenveredeling</topic><topic>Laboratory of Phytopathology</topic><topic>Laboratory of Plant Breeding</topic><topic>leaf blotch</topic><topic>Meiosis</topic><topic>meiotic drive</topic><topic>microbial genetics</topic><topic>Microbiology/Plant-Biotic Interactions</topic><topic>microsatellite repeats</topic><topic>Models, Genetic</topic><topic>Mycosphaerella graminicola</topic><topic>Netherlands</topic><topic>Nondisjunction</topic><topic>Offspring</topic><topic>Parents</topic><topic>Pathogenicity</topic><topic>Pathogens</topic><topic>Plant Breeding</topic><topic>plant pathogenic fungi</topic><topic>Plant sciences</topic><topic>Plants - microbiology</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Polymerase Chain Reaction</topic><topic>PRI Biodiversiteit en Veredeling</topic><topic>PRI Biodiversity and Breeding</topic><topic>PRI Biointeractions en Plantgezondheid</topic><topic>Progeny</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Sequence Analysis, DNA</topic><topic>strains</topic><topic>Studies</topic><topic>Translocation, Genetic</topic><topic>Triticum aestivum</topic><topic>Triticum turgidum subsp. durum</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wittenberg, A.H.J</creatorcontrib><creatorcontrib>Lee, T.A.J. van der</creatorcontrib><creatorcontrib>Ben M'Barek, S</creatorcontrib><creatorcontrib>Ware, S.B</creatorcontrib><creatorcontrib>Goodwin, S.B</creatorcontrib><creatorcontrib>Kilian, A</creatorcontrib><creatorcontrib>Visser, R.G.F</creatorcontrib><creatorcontrib>Kema, G.H.J</creatorcontrib><creatorcontrib>Schouten, H.J</creatorcontrib><creatorcontrib>USDOE Joint Genome Institute (JGI), Berkeley, CA (United States)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>NARCIS:Publications</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wittenberg, A.H.J</au><au>Lee, T.A.J. van der</au><au>Ben M'Barek, S</au><au>Ware, S.B</au><au>Goodwin, S.B</au><au>Kilian, A</au><au>Visser, R.G.F</au><au>Kema, G.H.J</au><au>Schouten, H.J</au><aucorp>USDOE Joint Genome Institute (JGI), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2009-06-10</date><risdate>2009</risdate><volume>4</volume><issue>6</issue><spage>e5863</spage><pages>e5863-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Meiosis in the haploid plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs and do not pair during meiosis. Because these chromosomes are not present universally in the genome of the organism they can be considered to be dispensable. To analyze the meiotic transmission of unequal chromosome numbers, two segregating populations were generated by crossing genetically unrelated parent isolates originating from Algeria and The Netherlands that had pathogenicity towards durum or bread wheat, respectively. Detailed genetic analyses of these progenies using high-density mapping (1793 DArT, 258 AFLP and 25 SSR markers) and graphical genotyping revealed that M. graminicola has up to eight dispensable chromosomes, the highest number reported in filamentous fungi. These chromosomes vary from 0.39 to 0.77 Mb in size, and represent up to 38% of the chromosomal complement. Chromosome numbers among progeny isolates varied widely, with some progeny missing up to three chromosomes, while other strains were disomic for one or more chromosomes. Between 15-20% of the progeny isolates lacked one or more chromosomes that were present in both parents. The two high-density maps showed no recombination of dispensable chromosomes and hence, their meiotic processing may require distributive disjunction, a phenomenon that is rarely observed in fungi. The maps also enabled the identification of individual twin isolates from a single ascus that shared the same missing or doubled chromosomes indicating that the chromosomal polymorphisms were mitotically stable and originated from nondisjunction during the second division and, less frequently, during the first division of fungal meiosis. High genome plasticity could be among the strategies enabling this versatile pathogen to quickly overcome adverse biotic and abiotic conditions in wheat fields.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19516898</pmid><doi>10.1371/journal.pone.0005863</doi><tpages>e5863</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2009-06, Vol.4 (6), p.e5863
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1289135061
source Publicly Available Content Database; PubMed Central
subjects Algeria
Amplified fragment length polymorphism
Analysis
Antibiotics
Asci
Ascomycota - genetics
Ascomycota - physiology
Ascospores
BASIC BIOLOGICAL SCIENCES
Biointeracties and Plant Health
Bread
Chromosome Mapping
chromosome number
chromosome transmission
Chromosomes
Chromosomes, Fungal
Crosses, Genetic
crossing
Deoxyribonucleic acid
diploidy
Disjunction
DNA
Domestication
Drug resistance
durum wheat
EPS-4
Fungi
Gene mapping
Genes
Genes, Fungal
Genetic crosses
Genetic diversity
Genetic Linkage
Genetic Markers
Genetic polymorphisms
Genetics and Genomics/Chromosome Biology
Genetics and Genomics/Genome Projects
Genetics and Genomics/Microbial Evolution and Genomics
genome
Genome, Fungal
Genomes
Genomics
Genotyping
haploidy
Homologous recombination
Homology
Laboratories
Laboratorium voor Fytopathologie
Laboratorium voor Phytopathologie
Laboratorium voor Plantenveredeling
Laboratory of Phytopathology
Laboratory of Plant Breeding
leaf blotch
Meiosis
meiotic drive
microbial genetics
Microbiology/Plant-Biotic Interactions
microsatellite repeats
Models, Genetic
Mycosphaerella graminicola
Netherlands
Nondisjunction
Offspring
Parents
Pathogenicity
Pathogens
Plant Breeding
plant pathogenic fungi
Plant sciences
Plants - microbiology
Plastic properties
Plasticity
Polymerase Chain Reaction
PRI Biodiversiteit en Veredeling
PRI Biodiversity and Breeding
PRI Biointeractions en Plantgezondheid
Progeny
Science & Technology - Other Topics
Sequence Analysis, DNA
strains
Studies
Translocation, Genetic
Triticum aestivum
Triticum turgidum subsp. durum
Wheat
title Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-08T03%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meiosis%20drives%20extraordinary%20genome%20plasticity%20in%20the%20haploid%20fungal%20plant%20pathogen%20Mycosphaerella%20graminicola&rft.jtitle=PloS%20one&rft.au=Wittenberg,%20A.H.J&rft.aucorp=USDOE%20Joint%20Genome%20Institute%20(JGI),%20Berkeley,%20CA%20(United%20States)&rft.date=2009-06-10&rft.volume=4&rft.issue=6&rft.spage=e5863&rft.pages=e5863-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0005863&rft_dat=%3Cgale_plos_%3EA473081370%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c815t-62798d2db4880f892978b4427057bb37aba7be75111809c9e3d71151fb3d6dd23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1289135061&rft_id=info:pmid/19516898&rft_galeid=A473081370&rfr_iscdi=true