Loading…
Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola
Meiosis in the haploid plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack hom...
Saved in:
Published in: | PloS one 2009-06, Vol.4 (6), p.e5863 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c815t-62798d2db4880f892978b4427057bb37aba7be75111809c9e3d71151fb3d6dd23 |
---|---|
cites | |
container_end_page | |
container_issue | 6 |
container_start_page | e5863 |
container_title | PloS one |
container_volume | 4 |
creator | Wittenberg, A.H.J Lee, T.A.J. van der Ben M'Barek, S Ware, S.B Goodwin, S.B Kilian, A Visser, R.G.F Kema, G.H.J Schouten, H.J |
description | Meiosis in the haploid plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs and do not pair during meiosis. Because these chromosomes are not present universally in the genome of the organism they can be considered to be dispensable. To analyze the meiotic transmission of unequal chromosome numbers, two segregating populations were generated by crossing genetically unrelated parent isolates originating from Algeria and The Netherlands that had pathogenicity towards durum or bread wheat, respectively. Detailed genetic analyses of these progenies using high-density mapping (1793 DArT, 258 AFLP and 25 SSR markers) and graphical genotyping revealed that M. graminicola has up to eight dispensable chromosomes, the highest number reported in filamentous fungi. These chromosomes vary from 0.39 to 0.77 Mb in size, and represent up to 38% of the chromosomal complement. Chromosome numbers among progeny isolates varied widely, with some progeny missing up to three chromosomes, while other strains were disomic for one or more chromosomes. Between 15-20% of the progeny isolates lacked one or more chromosomes that were present in both parents. The two high-density maps showed no recombination of dispensable chromosomes and hence, their meiotic processing may require distributive disjunction, a phenomenon that is rarely observed in fungi. The maps also enabled the identification of individual twin isolates from a single ascus that shared the same missing or doubled chromosomes indicating that the chromosomal polymorphisms were mitotically stable and originated from nondisjunction during the second division and, less frequently, during the first division of fungal meiosis. High genome plasticity could be among the strategies enabling this versatile pathogen to quickly overcome adverse biotic and abiotic conditions in wheat fields. |
doi_str_mv | 10.1371/journal.pone.0005863 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289135061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473081370</galeid><doaj_id>oai_doaj_org_article_aa814fe8dadf4153995287125b89dc59</doaj_id><sourcerecordid>A473081370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c815t-62798d2db4880f892978b4427057bb37aba7be75111809c9e3d71151fb3d6dd23</originalsourceid><addsrcrecordid>eNqNk2tr1jAUx4sobk6_gZeiMPDFHnNp2sQXwhheBpsDb29D2qRtRp6kS9rNfXtP10fdIyJSaEvyO_-cc_45WfYYoxWmFX51HqbolVsNwZsVQojxkt7JdrGg5KAkiN699b-TPUjpHBjKy_J-toMFwyUXfDfzp8aGZFOuo700KTffx6hC1NareJ13xoe1yQen0mgbO17n1udjb_JeDS5YnbeT75SbAT_mgxr7ACH56XUT0tArE41zKu-iWltvm-DUw-xeq1wyjzbfvezru7dfjj4cnJy9Pz46PDloOGYj5FwJromuC85RywURFa-LglSIVXVNK1WrqjYVwxhzJBphqK4wZritqS61JnQve7boQppJblqVJCZcYMpQiYE4Xggd1Lkcol1DwTIoK28WQuykilC0M1IpjovWcK10W2BGhWCEV5iwmgvdMAFarxetKwXlWw8vCf1rbLoRdLaOs_jVFKV382eY6iQpR0VZQPCbTapTvTa6MR4ccFsZbe9428suXEoCDpaEgsDzRSCASTKBTabpm-C9aUaJoZW0mk_Z35wSw8Vk0ijXNjWzPd6EKUnIpChKuEJ72Ys_wL93b7VQ4L6R1rcBUmvg0WYNRnvTWlg_LCqKONxWBAEvtwKAGeGudWpKSR5__vT_7Nm3bXb_Ftsb5cY-BTeNNvi0DRYL2MSQUjTtrw5jJOeB-lmnnAdKbgYKwp7edud30GaCAHiyAK0KUnURPP94QhAmiDCCyn_sI8EYpz8A3vIvqA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289135061</pqid></control><display><type>article</type><title>Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Wittenberg, A.H.J ; Lee, T.A.J. van der ; Ben M'Barek, S ; Ware, S.B ; Goodwin, S.B ; Kilian, A ; Visser, R.G.F ; Kema, G.H.J ; Schouten, H.J</creator><creatorcontrib>Wittenberg, A.H.J ; Lee, T.A.J. van der ; Ben M'Barek, S ; Ware, S.B ; Goodwin, S.B ; Kilian, A ; Visser, R.G.F ; Kema, G.H.J ; Schouten, H.J ; USDOE Joint Genome Institute (JGI), Berkeley, CA (United States)</creatorcontrib><description>Meiosis in the haploid plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs and do not pair during meiosis. Because these chromosomes are not present universally in the genome of the organism they can be considered to be dispensable. To analyze the meiotic transmission of unequal chromosome numbers, two segregating populations were generated by crossing genetically unrelated parent isolates originating from Algeria and The Netherlands that had pathogenicity towards durum or bread wheat, respectively. Detailed genetic analyses of these progenies using high-density mapping (1793 DArT, 258 AFLP and 25 SSR markers) and graphical genotyping revealed that M. graminicola has up to eight dispensable chromosomes, the highest number reported in filamentous fungi. These chromosomes vary from 0.39 to 0.77 Mb in size, and represent up to 38% of the chromosomal complement. Chromosome numbers among progeny isolates varied widely, with some progeny missing up to three chromosomes, while other strains were disomic for one or more chromosomes. Between 15-20% of the progeny isolates lacked one or more chromosomes that were present in both parents. The two high-density maps showed no recombination of dispensable chromosomes and hence, their meiotic processing may require distributive disjunction, a phenomenon that is rarely observed in fungi. The maps also enabled the identification of individual twin isolates from a single ascus that shared the same missing or doubled chromosomes indicating that the chromosomal polymorphisms were mitotically stable and originated from nondisjunction during the second division and, less frequently, during the first division of fungal meiosis. High genome plasticity could be among the strategies enabling this versatile pathogen to quickly overcome adverse biotic and abiotic conditions in wheat fields.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0005863</identifier><identifier>PMID: 19516898</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algeria ; Amplified fragment length polymorphism ; Analysis ; Antibiotics ; Asci ; Ascomycota - genetics ; Ascomycota - physiology ; Ascospores ; BASIC BIOLOGICAL SCIENCES ; Biointeracties and Plant Health ; Bread ; Chromosome Mapping ; chromosome number ; chromosome transmission ; Chromosomes ; Chromosomes, Fungal ; Crosses, Genetic ; crossing ; Deoxyribonucleic acid ; diploidy ; Disjunction ; DNA ; Domestication ; Drug resistance ; durum wheat ; EPS-4 ; Fungi ; Gene mapping ; Genes ; Genes, Fungal ; Genetic crosses ; Genetic diversity ; Genetic Linkage ; Genetic Markers ; Genetic polymorphisms ; Genetics and Genomics/Chromosome Biology ; Genetics and Genomics/Genome Projects ; Genetics and Genomics/Microbial Evolution and Genomics ; genome ; Genome, Fungal ; Genomes ; Genomics ; Genotyping ; haploidy ; Homologous recombination ; Homology ; Laboratories ; Laboratorium voor Fytopathologie ; Laboratorium voor Phytopathologie ; Laboratorium voor Plantenveredeling ; Laboratory of Phytopathology ; Laboratory of Plant Breeding ; leaf blotch ; Meiosis ; meiotic drive ; microbial genetics ; Microbiology/Plant-Biotic Interactions ; microsatellite repeats ; Models, Genetic ; Mycosphaerella graminicola ; Netherlands ; Nondisjunction ; Offspring ; Parents ; Pathogenicity ; Pathogens ; Plant Breeding ; plant pathogenic fungi ; Plant sciences ; Plants - microbiology ; Plastic properties ; Plasticity ; Polymerase Chain Reaction ; PRI Biodiversiteit en Veredeling ; PRI Biodiversity and Breeding ; PRI Biointeractions en Plantgezondheid ; Progeny ; Science & Technology - Other Topics ; Sequence Analysis, DNA ; strains ; Studies ; Translocation, Genetic ; Triticum aestivum ; Triticum turgidum subsp. durum ; Wheat</subject><ispartof>PloS one, 2009-06, Vol.4 (6), p.e5863</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2009</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c815t-62798d2db4880f892978b4427057bb37aba7be75111809c9e3d71151fb3d6dd23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1289135061/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1289135061?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19516898$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1627374$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wittenberg, A.H.J</creatorcontrib><creatorcontrib>Lee, T.A.J. van der</creatorcontrib><creatorcontrib>Ben M'Barek, S</creatorcontrib><creatorcontrib>Ware, S.B</creatorcontrib><creatorcontrib>Goodwin, S.B</creatorcontrib><creatorcontrib>Kilian, A</creatorcontrib><creatorcontrib>Visser, R.G.F</creatorcontrib><creatorcontrib>Kema, G.H.J</creatorcontrib><creatorcontrib>Schouten, H.J</creatorcontrib><creatorcontrib>USDOE Joint Genome Institute (JGI), Berkeley, CA (United States)</creatorcontrib><title>Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Meiosis in the haploid plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs and do not pair during meiosis. Because these chromosomes are not present universally in the genome of the organism they can be considered to be dispensable. To analyze the meiotic transmission of unequal chromosome numbers, two segregating populations were generated by crossing genetically unrelated parent isolates originating from Algeria and The Netherlands that had pathogenicity towards durum or bread wheat, respectively. Detailed genetic analyses of these progenies using high-density mapping (1793 DArT, 258 AFLP and 25 SSR markers) and graphical genotyping revealed that M. graminicola has up to eight dispensable chromosomes, the highest number reported in filamentous fungi. These chromosomes vary from 0.39 to 0.77 Mb in size, and represent up to 38% of the chromosomal complement. Chromosome numbers among progeny isolates varied widely, with some progeny missing up to three chromosomes, while other strains were disomic for one or more chromosomes. Between 15-20% of the progeny isolates lacked one or more chromosomes that were present in both parents. The two high-density maps showed no recombination of dispensable chromosomes and hence, their meiotic processing may require distributive disjunction, a phenomenon that is rarely observed in fungi. The maps also enabled the identification of individual twin isolates from a single ascus that shared the same missing or doubled chromosomes indicating that the chromosomal polymorphisms were mitotically stable and originated from nondisjunction during the second division and, less frequently, during the first division of fungal meiosis. High genome plasticity could be among the strategies enabling this versatile pathogen to quickly overcome adverse biotic and abiotic conditions in wheat fields.</description><subject>Algeria</subject><subject>Amplified fragment length polymorphism</subject><subject>Analysis</subject><subject>Antibiotics</subject><subject>Asci</subject><subject>Ascomycota - genetics</subject><subject>Ascomycota - physiology</subject><subject>Ascospores</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biointeracties and Plant Health</subject><subject>Bread</subject><subject>Chromosome Mapping</subject><subject>chromosome number</subject><subject>chromosome transmission</subject><subject>Chromosomes</subject><subject>Chromosomes, Fungal</subject><subject>Crosses, Genetic</subject><subject>crossing</subject><subject>Deoxyribonucleic acid</subject><subject>diploidy</subject><subject>Disjunction</subject><subject>DNA</subject><subject>Domestication</subject><subject>Drug resistance</subject><subject>durum wheat</subject><subject>EPS-4</subject><subject>Fungi</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genes, Fungal</subject><subject>Genetic crosses</subject><subject>Genetic diversity</subject><subject>Genetic Linkage</subject><subject>Genetic Markers</subject><subject>Genetic polymorphisms</subject><subject>Genetics and Genomics/Chromosome Biology</subject><subject>Genetics and Genomics/Genome Projects</subject><subject>Genetics and Genomics/Microbial Evolution and Genomics</subject><subject>genome</subject><subject>Genome, Fungal</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotyping</subject><subject>haploidy</subject><subject>Homologous recombination</subject><subject>Homology</subject><subject>Laboratories</subject><subject>Laboratorium voor Fytopathologie</subject><subject>Laboratorium voor Phytopathologie</subject><subject>Laboratorium voor Plantenveredeling</subject><subject>Laboratory of Phytopathology</subject><subject>Laboratory of Plant Breeding</subject><subject>leaf blotch</subject><subject>Meiosis</subject><subject>meiotic drive</subject><subject>microbial genetics</subject><subject>Microbiology/Plant-Biotic Interactions</subject><subject>microsatellite repeats</subject><subject>Models, Genetic</subject><subject>Mycosphaerella graminicola</subject><subject>Netherlands</subject><subject>Nondisjunction</subject><subject>Offspring</subject><subject>Parents</subject><subject>Pathogenicity</subject><subject>Pathogens</subject><subject>Plant Breeding</subject><subject>plant pathogenic fungi</subject><subject>Plant sciences</subject><subject>Plants - microbiology</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Polymerase Chain Reaction</subject><subject>PRI Biodiversiteit en Veredeling</subject><subject>PRI Biodiversity and Breeding</subject><subject>PRI Biointeractions en Plantgezondheid</subject><subject>Progeny</subject><subject>Science & Technology - Other Topics</subject><subject>Sequence Analysis, DNA</subject><subject>strains</subject><subject>Studies</subject><subject>Translocation, Genetic</subject><subject>Triticum aestivum</subject><subject>Triticum turgidum subsp. durum</subject><subject>Wheat</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk2tr1jAUx4sobk6_gZeiMPDFHnNp2sQXwhheBpsDb29D2qRtRp6kS9rNfXtP10fdIyJSaEvyO_-cc_45WfYYoxWmFX51HqbolVsNwZsVQojxkt7JdrGg5KAkiN699b-TPUjpHBjKy_J-toMFwyUXfDfzp8aGZFOuo700KTffx6hC1NareJ13xoe1yQen0mgbO17n1udjb_JeDS5YnbeT75SbAT_mgxr7ACH56XUT0tArE41zKu-iWltvm-DUw-xeq1wyjzbfvezru7dfjj4cnJy9Pz46PDloOGYj5FwJromuC85RywURFa-LglSIVXVNK1WrqjYVwxhzJBphqK4wZritqS61JnQve7boQppJblqVJCZcYMpQiYE4Xggd1Lkcol1DwTIoK28WQuykilC0M1IpjovWcK10W2BGhWCEV5iwmgvdMAFarxetKwXlWw8vCf1rbLoRdLaOs_jVFKV382eY6iQpR0VZQPCbTapTvTa6MR4ccFsZbe9428suXEoCDpaEgsDzRSCASTKBTabpm-C9aUaJoZW0mk_Z35wSw8Vk0ijXNjWzPd6EKUnIpChKuEJ72Ys_wL93b7VQ4L6R1rcBUmvg0WYNRnvTWlg_LCqKONxWBAEvtwKAGeGudWpKSR5__vT_7Nm3bXb_Ftsb5cY-BTeNNvi0DRYL2MSQUjTtrw5jJOeB-lmnnAdKbgYKwp7edud30GaCAHiyAK0KUnURPP94QhAmiDCCyn_sI8EYpz8A3vIvqA</recordid><startdate>20090610</startdate><enddate>20090610</enddate><creator>Wittenberg, A.H.J</creator><creator>Lee, T.A.J. van der</creator><creator>Ben M'Barek, S</creator><creator>Ware, S.B</creator><creator>Goodwin, S.B</creator><creator>Kilian, A</creator><creator>Visser, R.G.F</creator><creator>Kema, G.H.J</creator><creator>Schouten, H.J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>QVL</scope><scope>DOA</scope></search><sort><creationdate>20090610</creationdate><title>Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola</title><author>Wittenberg, A.H.J ; Lee, T.A.J. van der ; Ben M'Barek, S ; Ware, S.B ; Goodwin, S.B ; Kilian, A ; Visser, R.G.F ; Kema, G.H.J ; Schouten, H.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c815t-62798d2db4880f892978b4427057bb37aba7be75111809c9e3d71151fb3d6dd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algeria</topic><topic>Amplified fragment length polymorphism</topic><topic>Analysis</topic><topic>Antibiotics</topic><topic>Asci</topic><topic>Ascomycota - genetics</topic><topic>Ascomycota - physiology</topic><topic>Ascospores</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biointeracties and Plant Health</topic><topic>Bread</topic><topic>Chromosome Mapping</topic><topic>chromosome number</topic><topic>chromosome transmission</topic><topic>Chromosomes</topic><topic>Chromosomes, Fungal</topic><topic>Crosses, Genetic</topic><topic>crossing</topic><topic>Deoxyribonucleic acid</topic><topic>diploidy</topic><topic>Disjunction</topic><topic>DNA</topic><topic>Domestication</topic><topic>Drug resistance</topic><topic>durum wheat</topic><topic>EPS-4</topic><topic>Fungi</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genes, Fungal</topic><topic>Genetic crosses</topic><topic>Genetic diversity</topic><topic>Genetic Linkage</topic><topic>Genetic Markers</topic><topic>Genetic polymorphisms</topic><topic>Genetics and Genomics/Chromosome Biology</topic><topic>Genetics and Genomics/Genome Projects</topic><topic>Genetics and Genomics/Microbial Evolution and Genomics</topic><topic>genome</topic><topic>Genome, Fungal</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotyping</topic><topic>haploidy</topic><topic>Homologous recombination</topic><topic>Homology</topic><topic>Laboratories</topic><topic>Laboratorium voor Fytopathologie</topic><topic>Laboratorium voor Phytopathologie</topic><topic>Laboratorium voor Plantenveredeling</topic><topic>Laboratory of Phytopathology</topic><topic>Laboratory of Plant Breeding</topic><topic>leaf blotch</topic><topic>Meiosis</topic><topic>meiotic drive</topic><topic>microbial genetics</topic><topic>Microbiology/Plant-Biotic Interactions</topic><topic>microsatellite repeats</topic><topic>Models, Genetic</topic><topic>Mycosphaerella graminicola</topic><topic>Netherlands</topic><topic>Nondisjunction</topic><topic>Offspring</topic><topic>Parents</topic><topic>Pathogenicity</topic><topic>Pathogens</topic><topic>Plant Breeding</topic><topic>plant pathogenic fungi</topic><topic>Plant sciences</topic><topic>Plants - microbiology</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Polymerase Chain Reaction</topic><topic>PRI Biodiversiteit en Veredeling</topic><topic>PRI Biodiversity and Breeding</topic><topic>PRI Biointeractions en Plantgezondheid</topic><topic>Progeny</topic><topic>Science & Technology - Other Topics</topic><topic>Sequence Analysis, DNA</topic><topic>strains</topic><topic>Studies</topic><topic>Translocation, Genetic</topic><topic>Triticum aestivum</topic><topic>Triticum turgidum subsp. durum</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wittenberg, A.H.J</creatorcontrib><creatorcontrib>Lee, T.A.J. van der</creatorcontrib><creatorcontrib>Ben M'Barek, S</creatorcontrib><creatorcontrib>Ware, S.B</creatorcontrib><creatorcontrib>Goodwin, S.B</creatorcontrib><creatorcontrib>Kilian, A</creatorcontrib><creatorcontrib>Visser, R.G.F</creatorcontrib><creatorcontrib>Kema, G.H.J</creatorcontrib><creatorcontrib>Schouten, H.J</creatorcontrib><creatorcontrib>USDOE Joint Genome Institute (JGI), Berkeley, CA (United States)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>ProQuest Health & Medical Collection</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>NARCIS:Publications</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wittenberg, A.H.J</au><au>Lee, T.A.J. van der</au><au>Ben M'Barek, S</au><au>Ware, S.B</au><au>Goodwin, S.B</au><au>Kilian, A</au><au>Visser, R.G.F</au><au>Kema, G.H.J</au><au>Schouten, H.J</au><aucorp>USDOE Joint Genome Institute (JGI), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2009-06-10</date><risdate>2009</risdate><volume>4</volume><issue>6</issue><spage>e5863</spage><pages>e5863-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Meiosis in the haploid plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs and do not pair during meiosis. Because these chromosomes are not present universally in the genome of the organism they can be considered to be dispensable. To analyze the meiotic transmission of unequal chromosome numbers, two segregating populations were generated by crossing genetically unrelated parent isolates originating from Algeria and The Netherlands that had pathogenicity towards durum or bread wheat, respectively. Detailed genetic analyses of these progenies using high-density mapping (1793 DArT, 258 AFLP and 25 SSR markers) and graphical genotyping revealed that M. graminicola has up to eight dispensable chromosomes, the highest number reported in filamentous fungi. These chromosomes vary from 0.39 to 0.77 Mb in size, and represent up to 38% of the chromosomal complement. Chromosome numbers among progeny isolates varied widely, with some progeny missing up to three chromosomes, while other strains were disomic for one or more chromosomes. Between 15-20% of the progeny isolates lacked one or more chromosomes that were present in both parents. The two high-density maps showed no recombination of dispensable chromosomes and hence, their meiotic processing may require distributive disjunction, a phenomenon that is rarely observed in fungi. The maps also enabled the identification of individual twin isolates from a single ascus that shared the same missing or doubled chromosomes indicating that the chromosomal polymorphisms were mitotically stable and originated from nondisjunction during the second division and, less frequently, during the first division of fungal meiosis. High genome plasticity could be among the strategies enabling this versatile pathogen to quickly overcome adverse biotic and abiotic conditions in wheat fields.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19516898</pmid><doi>10.1371/journal.pone.0005863</doi><tpages>e5863</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2009-06, Vol.4 (6), p.e5863 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1289135061 |
source | Publicly Available Content Database; PubMed Central |
subjects | Algeria Amplified fragment length polymorphism Analysis Antibiotics Asci Ascomycota - genetics Ascomycota - physiology Ascospores BASIC BIOLOGICAL SCIENCES Biointeracties and Plant Health Bread Chromosome Mapping chromosome number chromosome transmission Chromosomes Chromosomes, Fungal Crosses, Genetic crossing Deoxyribonucleic acid diploidy Disjunction DNA Domestication Drug resistance durum wheat EPS-4 Fungi Gene mapping Genes Genes, Fungal Genetic crosses Genetic diversity Genetic Linkage Genetic Markers Genetic polymorphisms Genetics and Genomics/Chromosome Biology Genetics and Genomics/Genome Projects Genetics and Genomics/Microbial Evolution and Genomics genome Genome, Fungal Genomes Genomics Genotyping haploidy Homologous recombination Homology Laboratories Laboratorium voor Fytopathologie Laboratorium voor Phytopathologie Laboratorium voor Plantenveredeling Laboratory of Phytopathology Laboratory of Plant Breeding leaf blotch Meiosis meiotic drive microbial genetics Microbiology/Plant-Biotic Interactions microsatellite repeats Models, Genetic Mycosphaerella graminicola Netherlands Nondisjunction Offspring Parents Pathogenicity Pathogens Plant Breeding plant pathogenic fungi Plant sciences Plants - microbiology Plastic properties Plasticity Polymerase Chain Reaction PRI Biodiversiteit en Veredeling PRI Biodiversity and Breeding PRI Biointeractions en Plantgezondheid Progeny Science & Technology - Other Topics Sequence Analysis, DNA strains Studies Translocation, Genetic Triticum aestivum Triticum turgidum subsp. durum Wheat |
title | Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-08T03%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meiosis%20drives%20extraordinary%20genome%20plasticity%20in%20the%20haploid%20fungal%20plant%20pathogen%20Mycosphaerella%20graminicola&rft.jtitle=PloS%20one&rft.au=Wittenberg,%20A.H.J&rft.aucorp=USDOE%20Joint%20Genome%20Institute%20(JGI),%20Berkeley,%20CA%20(United%20States)&rft.date=2009-06-10&rft.volume=4&rft.issue=6&rft.spage=e5863&rft.pages=e5863-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0005863&rft_dat=%3Cgale_plos_%3EA473081370%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c815t-62798d2db4880f892978b4427057bb37aba7be75111809c9e3d71151fb3d6dd23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1289135061&rft_id=info:pmid/19516898&rft_galeid=A473081370&rfr_iscdi=true |