Loading…

Using biotic interaction networks for prediction in biodiversity and emerging diseases

Networks offer a powerful tool for understanding and visualizing inter-species ecological and evolutionary interactions. Previously considered examples, such as trophic networks, are just representations of experimentally observed direct interactions. However, species interactions are so rich and co...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2009-05, Vol.4 (5), p.e5725-e5725
Main Authors: Stephens, Christopher R, Heau, Joaquín Giménez, González, Camila, Ibarra-Cerdeña, Carlos N, Sánchez-Cordero, Victor, González-Salazar, Constantino
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Networks offer a powerful tool for understanding and visualizing inter-species ecological and evolutionary interactions. Previously considered examples, such as trophic networks, are just representations of experimentally observed direct interactions. However, species interactions are so rich and complex it is not feasible to directly observe more than a small fraction. In this paper, using data mining techniques, we show how potential interactions can be inferred from geographic data, rather than by direct observation. An important application area for this methodology is that of emerging diseases, where, often, little is known about inter-species interactions, such as between vectors and reservoirs. Here, we show how using geographic data, biotic interaction networks that model statistical dependencies between species distributions can be used to infer and understand inter-species interactions. Furthermore, we show how such networks can be used to build prediction models. For example, for predicting the most important reservoirs of a disease, or the degree of disease risk associated with a geographical area. We illustrate the general methodology by considering an important emerging disease--Leishmaniasis. This data mining methodology allows for the use of geographic data to construct inferential biotic interaction networks which can then be used to build prediction models with a wide range of applications in ecology, biodiversity and emerging diseases.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0005725