Loading…

Eukaryotic-Acquired Gene by a Biotrophic Phytopathogen Allows Prolonged Survival on the Host by Counteracting the Shut-Down of Plant Photosynthesis

Xanthomonas citri pv. citri, the bacteria responsible for citrus canker posses a biological active plant natriuretic peptide (PNP)-like protein, not present in any other bacteria. PNPs are a class of extracellular, systemically mobile peptides that elicit a number of plant responses important in hom...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2010-01, Vol.5 (1), p.e8950-e8950
Main Authors: Garavaglia, Betiana S, Thomas, Ludivine, Gottig, Natalia, Dunger, Germán, Garofalo, Cecilia G, Daurelio, Lucas D, Ndimba, Bongani, Orellano, Elena G, Gehring, Chris, Ottado, Jorgelina
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c715t-32edd2ed2ca7d6c1fa772ff053519890f6af46190adadb6b20e69e136624900b3
cites
container_end_page e8950
container_issue 1
container_start_page e8950
container_title PloS one
container_volume 5
creator Garavaglia, Betiana S
Thomas, Ludivine
Gottig, Natalia
Dunger, Germán
Garofalo, Cecilia G
Daurelio, Lucas D
Ndimba, Bongani
Orellano, Elena G
Gehring, Chris
Ottado, Jorgelina
description Xanthomonas citri pv. citri, the bacteria responsible for citrus canker posses a biological active plant natriuretic peptide (PNP)-like protein, not present in any other bacteria. PNPs are a class of extracellular, systemically mobile peptides that elicit a number of plant responses important in homeostasis and growth. Previously, we showed that a Xanthomonas citri pv. citri mutant lacking the PNP-like protein XacPNP produced more necrotic lesions in citrus leaves than wild type infections and suggested a role for XacPNP in the regulation of host homeostasis. Here we have analyzed the proteome modifications observed in citrus leaves infected with the wild type and XacPNP deletion mutant bacteria. While both of them cause down-regulation of enzymes related to photosynthesis as well as chloroplastic ribosomal proteins, proteins related to defense responses are up-regulated. However, leaves infiltrated with the XacPNP deletion mutant show a more pronounced decrease in photosynthetic proteins while no reduction in defense related proteins as compared to the wild-type pathogen. This suggests that XacPNP serves the pathogen to maintain host photosynthetic efficiency during pathogenesis. The results from the proteomics analyses are consistent with our chlorophyll fluorescence data and transcript analyses of defense genes that show a more marked reduction in photosynthesis in the mutant but no difference in the induction of genes diagnostic for biotic-stress responses. We therefore conclude that XacPNP counteracts the shut-down of host photosynthesis during infection and in that way maintains the tissue in better conditions, suggesting that the pathogen has adapted a host gene to modify its natural host and render it a better reservoir for prolonged bacterial survival and thus for further colonization.
doi_str_mv 10.1371/journal.pone.0008950
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289252045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473916050</galeid><doaj_id>oai_doaj_org_article_8d6b970c12824e2ea9da23f9c9ce8050</doaj_id><sourcerecordid>A473916050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c715t-32edd2ed2ca7d6c1fa772ff053519890f6af46190adadb6b20e69e136624900b3</originalsourceid><addsrcrecordid>eNqNk99u0zAUxiMEYmPwBggiIYG4aPGfxIlvJpUxtkmTNlHGreU6TuLh-nS2s9Hn4IVx126saBcoimL5_L4v9mefLHuN0RjTCn-6hME7accLcHqMEKp5iZ5ku5hTMmIE0acPxjvZixAuESppzdjzbIcgTBijZDf7fTj8lH4J0ajRRF0NxusmP9JO57NlLvPPBqKHRW9Uft4vIyxk7KHTLp9YCzchP_dgwXVJMx38tbmWNgeXx17nxxDiyuMABhe1lyoa191Wpv0QR1_gxuXQ5udWupi8IUJYulQOJrzMnrXSBv1q893LLr4efj84Hp2eHZ0cTE5HqsJlHFGimya9RMmqYQq3sqpI26ZNlpjXHLVMtgXDHMlGNjM2I0gzrjFljBQcoRndy96ufRcWgtjkGQQmNSclQUWZiJM10YC8FAtv5ikrAdKI2wnwnZA-RWe1qBs24xVSSU0KTbTkjSS05YorXaMSJa_9zd-G2Vw3Srvopd0y3a4404sOrgWpMSnxajEfNgYergYdopiboLRNCWoYgqgoLQvMK5bId_-Qj29uQ3Uyrd-4Nh21VCtPMSkqyjFbL3v8CJWeRs-NSnevNWl-S_BxS5CYqH_FTg4hiJPpt_9nz35ss-8fsL2WNvYB7BANuLANFmtQeQjB6_Y-Y4zEqnXu0hCr1hGb1kmyNw_P51501yt_r0srQcjOmyAupqlKEa4JxpzTP6O8HtA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289252045</pqid></control><display><type>article</type><title>Eukaryotic-Acquired Gene by a Biotrophic Phytopathogen Allows Prolonged Survival on the Host by Counteracting the Shut-Down of Plant Photosynthesis</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Garavaglia, Betiana S ; Thomas, Ludivine ; Gottig, Natalia ; Dunger, Germán ; Garofalo, Cecilia G ; Daurelio, Lucas D ; Ndimba, Bongani ; Orellano, Elena G ; Gehring, Chris ; Ottado, Jorgelina</creator><contributor>Ausubel, Frederick M.</contributor><creatorcontrib>Garavaglia, Betiana S ; Thomas, Ludivine ; Gottig, Natalia ; Dunger, Germán ; Garofalo, Cecilia G ; Daurelio, Lucas D ; Ndimba, Bongani ; Orellano, Elena G ; Gehring, Chris ; Ottado, Jorgelina ; Ausubel, Frederick M.</creatorcontrib><description>Xanthomonas citri pv. citri, the bacteria responsible for citrus canker posses a biological active plant natriuretic peptide (PNP)-like protein, not present in any other bacteria. PNPs are a class of extracellular, systemically mobile peptides that elicit a number of plant responses important in homeostasis and growth. Previously, we showed that a Xanthomonas citri pv. citri mutant lacking the PNP-like protein XacPNP produced more necrotic lesions in citrus leaves than wild type infections and suggested a role for XacPNP in the regulation of host homeostasis. Here we have analyzed the proteome modifications observed in citrus leaves infected with the wild type and XacPNP deletion mutant bacteria. While both of them cause down-regulation of enzymes related to photosynthesis as well as chloroplastic ribosomal proteins, proteins related to defense responses are up-regulated. However, leaves infiltrated with the XacPNP deletion mutant show a more pronounced decrease in photosynthetic proteins while no reduction in defense related proteins as compared to the wild-type pathogen. This suggests that XacPNP serves the pathogen to maintain host photosynthetic efficiency during pathogenesis. The results from the proteomics analyses are consistent with our chlorophyll fluorescence data and transcript analyses of defense genes that show a more marked reduction in photosynthesis in the mutant but no difference in the induction of genes diagnostic for biotic-stress responses. We therefore conclude that XacPNP counteracts the shut-down of host photosynthesis during infection and in that way maintains the tissue in better conditions, suggesting that the pathogen has adapted a host gene to modify its natural host and render it a better reservoir for prolonged bacterial survival and thus for further colonization.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0008950</identifier><identifier>PMID: 20126632</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Arabidopsis ; Bacteria ; bacterial diseases of plants ; bacterial proteins ; Biotechnology ; Canker ; cankers (plants) ; Carotenoids ; Chlorophyll ; Chloroplasts ; Citrus - microbiology ; Citrus sinensis ; Colonization ; Corn ; Data processing ; Deletion mutant ; Diagnostic systems ; Disease ; Electrophoresis, Gel, Two-Dimensional ; Fluorescence ; Gene expression ; Genes ; Genes, Plant ; Genetic engineering ; Glycine max ; Health aspects ; Homeostasis ; Host plants ; host-pathogen relationships ; Infections ; Leaves ; Lesions ; lesions (plant) ; Metabolism ; Microbiology/Plant-Biotic Interactions ; Molecular biology ; oranges ; Pathogenesis ; Pathogens ; Peptides ; Photosynthesis ; Physiology ; Plant biochemistry ; Plant Biology/Plant Biochemistry and Physiology ; Plant Biology/Plant-Biotic Interactions ; Plant Leaves - metabolism ; plant natriuretic peptide ; Plant photosynthesis ; Plant Proteins - metabolism ; Proteins ; Proteome ; Proteomics ; Pseudomonas syringae ; Reduction ; Ribosomal proteins ; signs and symptoms (plants) ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Survival ; Transcription ; Ustilago maydis ; Xanthomonas - physiology ; Xanthomonas citri ; Xanthomonas citri pv. citri</subject><ispartof>PloS one, 2010-01, Vol.5 (1), p.e8950-e8950</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Garavaglia et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Garavaglia et al. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c715t-32edd2ed2ca7d6c1fa772ff053519890f6af46190adadb6b20e69e136624900b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1289252045/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1289252045?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20126632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ausubel, Frederick M.</contributor><creatorcontrib>Garavaglia, Betiana S</creatorcontrib><creatorcontrib>Thomas, Ludivine</creatorcontrib><creatorcontrib>Gottig, Natalia</creatorcontrib><creatorcontrib>Dunger, Germán</creatorcontrib><creatorcontrib>Garofalo, Cecilia G</creatorcontrib><creatorcontrib>Daurelio, Lucas D</creatorcontrib><creatorcontrib>Ndimba, Bongani</creatorcontrib><creatorcontrib>Orellano, Elena G</creatorcontrib><creatorcontrib>Gehring, Chris</creatorcontrib><creatorcontrib>Ottado, Jorgelina</creatorcontrib><title>Eukaryotic-Acquired Gene by a Biotrophic Phytopathogen Allows Prolonged Survival on the Host by Counteracting the Shut-Down of Plant Photosynthesis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Xanthomonas citri pv. citri, the bacteria responsible for citrus canker posses a biological active plant natriuretic peptide (PNP)-like protein, not present in any other bacteria. PNPs are a class of extracellular, systemically mobile peptides that elicit a number of plant responses important in homeostasis and growth. Previously, we showed that a Xanthomonas citri pv. citri mutant lacking the PNP-like protein XacPNP produced more necrotic lesions in citrus leaves than wild type infections and suggested a role for XacPNP in the regulation of host homeostasis. Here we have analyzed the proteome modifications observed in citrus leaves infected with the wild type and XacPNP deletion mutant bacteria. While both of them cause down-regulation of enzymes related to photosynthesis as well as chloroplastic ribosomal proteins, proteins related to defense responses are up-regulated. However, leaves infiltrated with the XacPNP deletion mutant show a more pronounced decrease in photosynthetic proteins while no reduction in defense related proteins as compared to the wild-type pathogen. This suggests that XacPNP serves the pathogen to maintain host photosynthetic efficiency during pathogenesis. The results from the proteomics analyses are consistent with our chlorophyll fluorescence data and transcript analyses of defense genes that show a more marked reduction in photosynthesis in the mutant but no difference in the induction of genes diagnostic for biotic-stress responses. We therefore conclude that XacPNP counteracts the shut-down of host photosynthesis during infection and in that way maintains the tissue in better conditions, suggesting that the pathogen has adapted a host gene to modify its natural host and render it a better reservoir for prolonged bacterial survival and thus for further colonization.</description><subject>Arabidopsis</subject><subject>Bacteria</subject><subject>bacterial diseases of plants</subject><subject>bacterial proteins</subject><subject>Biotechnology</subject><subject>Canker</subject><subject>cankers (plants)</subject><subject>Carotenoids</subject><subject>Chlorophyll</subject><subject>Chloroplasts</subject><subject>Citrus - microbiology</subject><subject>Citrus sinensis</subject><subject>Colonization</subject><subject>Corn</subject><subject>Data processing</subject><subject>Deletion mutant</subject><subject>Diagnostic systems</subject><subject>Disease</subject><subject>Electrophoresis, Gel, Two-Dimensional</subject><subject>Fluorescence</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genetic engineering</subject><subject>Glycine max</subject><subject>Health aspects</subject><subject>Homeostasis</subject><subject>Host plants</subject><subject>host-pathogen relationships</subject><subject>Infections</subject><subject>Leaves</subject><subject>Lesions</subject><subject>lesions (plant)</subject><subject>Metabolism</subject><subject>Microbiology/Plant-Biotic Interactions</subject><subject>Molecular biology</subject><subject>oranges</subject><subject>Pathogenesis</subject><subject>Pathogens</subject><subject>Peptides</subject><subject>Photosynthesis</subject><subject>Physiology</subject><subject>Plant biochemistry</subject><subject>Plant Biology/Plant Biochemistry and Physiology</subject><subject>Plant Biology/Plant-Biotic Interactions</subject><subject>Plant Leaves - metabolism</subject><subject>plant natriuretic peptide</subject><subject>Plant photosynthesis</subject><subject>Plant Proteins - metabolism</subject><subject>Proteins</subject><subject>Proteome</subject><subject>Proteomics</subject><subject>Pseudomonas syringae</subject><subject>Reduction</subject><subject>Ribosomal proteins</subject><subject>signs and symptoms (plants)</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>Survival</subject><subject>Transcription</subject><subject>Ustilago maydis</subject><subject>Xanthomonas - physiology</subject><subject>Xanthomonas citri</subject><subject>Xanthomonas citri pv. citri</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99u0zAUxiMEYmPwBggiIYG4aPGfxIlvJpUxtkmTNlHGreU6TuLh-nS2s9Hn4IVx126saBcoimL5_L4v9mefLHuN0RjTCn-6hME7accLcHqMEKp5iZ5ku5hTMmIE0acPxjvZixAuESppzdjzbIcgTBijZDf7fTj8lH4J0ajRRF0NxusmP9JO57NlLvPPBqKHRW9Uft4vIyxk7KHTLp9YCzchP_dgwXVJMx38tbmWNgeXx17nxxDiyuMABhe1lyoa191Wpv0QR1_gxuXQ5udWupi8IUJYulQOJrzMnrXSBv1q893LLr4efj84Hp2eHZ0cTE5HqsJlHFGimya9RMmqYQq3sqpI26ZNlpjXHLVMtgXDHMlGNjM2I0gzrjFljBQcoRndy96ufRcWgtjkGQQmNSclQUWZiJM10YC8FAtv5ikrAdKI2wnwnZA-RWe1qBs24xVSSU0KTbTkjSS05YorXaMSJa_9zd-G2Vw3Srvopd0y3a4404sOrgWpMSnxajEfNgYergYdopiboLRNCWoYgqgoLQvMK5bId_-Qj29uQ3Uyrd-4Nh21VCtPMSkqyjFbL3v8CJWeRs-NSnevNWl-S_BxS5CYqH_FTg4hiJPpt_9nz35ss-8fsL2WNvYB7BANuLANFmtQeQjB6_Y-Y4zEqnXu0hCr1hGb1kmyNw_P51501yt_r0srQcjOmyAupqlKEa4JxpzTP6O8HtA</recordid><startdate>20100128</startdate><enddate>20100128</enddate><creator>Garavaglia, Betiana S</creator><creator>Thomas, Ludivine</creator><creator>Gottig, Natalia</creator><creator>Dunger, Germán</creator><creator>Garofalo, Cecilia G</creator><creator>Daurelio, Lucas D</creator><creator>Ndimba, Bongani</creator><creator>Orellano, Elena G</creator><creator>Gehring, Chris</creator><creator>Ottado, Jorgelina</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100128</creationdate><title>Eukaryotic-Acquired Gene by a Biotrophic Phytopathogen Allows Prolonged Survival on the Host by Counteracting the Shut-Down of Plant Photosynthesis</title><author>Garavaglia, Betiana S ; Thomas, Ludivine ; Gottig, Natalia ; Dunger, Germán ; Garofalo, Cecilia G ; Daurelio, Lucas D ; Ndimba, Bongani ; Orellano, Elena G ; Gehring, Chris ; Ottado, Jorgelina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c715t-32edd2ed2ca7d6c1fa772ff053519890f6af46190adadb6b20e69e136624900b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Arabidopsis</topic><topic>Bacteria</topic><topic>bacterial diseases of plants</topic><topic>bacterial proteins</topic><topic>Biotechnology</topic><topic>Canker</topic><topic>cankers (plants)</topic><topic>Carotenoids</topic><topic>Chlorophyll</topic><topic>Chloroplasts</topic><topic>Citrus - microbiology</topic><topic>Citrus sinensis</topic><topic>Colonization</topic><topic>Corn</topic><topic>Data processing</topic><topic>Deletion mutant</topic><topic>Diagnostic systems</topic><topic>Disease</topic><topic>Electrophoresis, Gel, Two-Dimensional</topic><topic>Fluorescence</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genetic engineering</topic><topic>Glycine max</topic><topic>Health aspects</topic><topic>Homeostasis</topic><topic>Host plants</topic><topic>host-pathogen relationships</topic><topic>Infections</topic><topic>Leaves</topic><topic>Lesions</topic><topic>lesions (plant)</topic><topic>Metabolism</topic><topic>Microbiology/Plant-Biotic Interactions</topic><topic>Molecular biology</topic><topic>oranges</topic><topic>Pathogenesis</topic><topic>Pathogens</topic><topic>Peptides</topic><topic>Photosynthesis</topic><topic>Physiology</topic><topic>Plant biochemistry</topic><topic>Plant Biology/Plant Biochemistry and Physiology</topic><topic>Plant Biology/Plant-Biotic Interactions</topic><topic>Plant Leaves - metabolism</topic><topic>plant natriuretic peptide</topic><topic>Plant photosynthesis</topic><topic>Plant Proteins - metabolism</topic><topic>Proteins</topic><topic>Proteome</topic><topic>Proteomics</topic><topic>Pseudomonas syringae</topic><topic>Reduction</topic><topic>Ribosomal proteins</topic><topic>signs and symptoms (plants)</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>Survival</topic><topic>Transcription</topic><topic>Ustilago maydis</topic><topic>Xanthomonas - physiology</topic><topic>Xanthomonas citri</topic><topic>Xanthomonas citri pv. citri</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garavaglia, Betiana S</creatorcontrib><creatorcontrib>Thomas, Ludivine</creatorcontrib><creatorcontrib>Gottig, Natalia</creatorcontrib><creatorcontrib>Dunger, Germán</creatorcontrib><creatorcontrib>Garofalo, Cecilia G</creatorcontrib><creatorcontrib>Daurelio, Lucas D</creatorcontrib><creatorcontrib>Ndimba, Bongani</creatorcontrib><creatorcontrib>Orellano, Elena G</creatorcontrib><creatorcontrib>Gehring, Chris</creatorcontrib><creatorcontrib>Ottado, Jorgelina</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garavaglia, Betiana S</au><au>Thomas, Ludivine</au><au>Gottig, Natalia</au><au>Dunger, Germán</au><au>Garofalo, Cecilia G</au><au>Daurelio, Lucas D</au><au>Ndimba, Bongani</au><au>Orellano, Elena G</au><au>Gehring, Chris</au><au>Ottado, Jorgelina</au><au>Ausubel, Frederick M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eukaryotic-Acquired Gene by a Biotrophic Phytopathogen Allows Prolonged Survival on the Host by Counteracting the Shut-Down of Plant Photosynthesis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-01-28</date><risdate>2010</risdate><volume>5</volume><issue>1</issue><spage>e8950</spage><epage>e8950</epage><pages>e8950-e8950</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Xanthomonas citri pv. citri, the bacteria responsible for citrus canker posses a biological active plant natriuretic peptide (PNP)-like protein, not present in any other bacteria. PNPs are a class of extracellular, systemically mobile peptides that elicit a number of plant responses important in homeostasis and growth. Previously, we showed that a Xanthomonas citri pv. citri mutant lacking the PNP-like protein XacPNP produced more necrotic lesions in citrus leaves than wild type infections and suggested a role for XacPNP in the regulation of host homeostasis. Here we have analyzed the proteome modifications observed in citrus leaves infected with the wild type and XacPNP deletion mutant bacteria. While both of them cause down-regulation of enzymes related to photosynthesis as well as chloroplastic ribosomal proteins, proteins related to defense responses are up-regulated. However, leaves infiltrated with the XacPNP deletion mutant show a more pronounced decrease in photosynthetic proteins while no reduction in defense related proteins as compared to the wild-type pathogen. This suggests that XacPNP serves the pathogen to maintain host photosynthetic efficiency during pathogenesis. The results from the proteomics analyses are consistent with our chlorophyll fluorescence data and transcript analyses of defense genes that show a more marked reduction in photosynthesis in the mutant but no difference in the induction of genes diagnostic for biotic-stress responses. We therefore conclude that XacPNP counteracts the shut-down of host photosynthesis during infection and in that way maintains the tissue in better conditions, suggesting that the pathogen has adapted a host gene to modify its natural host and render it a better reservoir for prolonged bacterial survival and thus for further colonization.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20126632</pmid><doi>10.1371/journal.pone.0008950</doi><tpages>e8950</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2010-01, Vol.5 (1), p.e8950-e8950
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1289252045
source Publicly Available Content Database; PubMed Central
subjects Arabidopsis
Bacteria
bacterial diseases of plants
bacterial proteins
Biotechnology
Canker
cankers (plants)
Carotenoids
Chlorophyll
Chloroplasts
Citrus - microbiology
Citrus sinensis
Colonization
Corn
Data processing
Deletion mutant
Diagnostic systems
Disease
Electrophoresis, Gel, Two-Dimensional
Fluorescence
Gene expression
Genes
Genes, Plant
Genetic engineering
Glycine max
Health aspects
Homeostasis
Host plants
host-pathogen relationships
Infections
Leaves
Lesions
lesions (plant)
Metabolism
Microbiology/Plant-Biotic Interactions
Molecular biology
oranges
Pathogenesis
Pathogens
Peptides
Photosynthesis
Physiology
Plant biochemistry
Plant Biology/Plant Biochemistry and Physiology
Plant Biology/Plant-Biotic Interactions
Plant Leaves - metabolism
plant natriuretic peptide
Plant photosynthesis
Plant Proteins - metabolism
Proteins
Proteome
Proteomics
Pseudomonas syringae
Reduction
Ribosomal proteins
signs and symptoms (plants)
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Survival
Transcription
Ustilago maydis
Xanthomonas - physiology
Xanthomonas citri
Xanthomonas citri pv. citri
title Eukaryotic-Acquired Gene by a Biotrophic Phytopathogen Allows Prolonged Survival on the Host by Counteracting the Shut-Down of Plant Photosynthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A39%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eukaryotic-Acquired%20Gene%20by%20a%20Biotrophic%20Phytopathogen%20Allows%20Prolonged%20Survival%20on%20the%20Host%20by%20Counteracting%20the%20Shut-Down%20of%20Plant%20Photosynthesis&rft.jtitle=PloS%20one&rft.au=Garavaglia,%20Betiana%20S&rft.date=2010-01-28&rft.volume=5&rft.issue=1&rft.spage=e8950&rft.epage=e8950&rft.pages=e8950-e8950&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0008950&rft_dat=%3Cgale_plos_%3EA473916050%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c715t-32edd2ed2ca7d6c1fa772ff053519890f6af46190adadb6b20e69e136624900b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1289252045&rft_id=info:pmid/20126632&rft_galeid=A473916050&rfr_iscdi=true