Loading…
ER-α36, a Variant of ER-α, Promotes Tamoxifen Agonist Action in Endometrial Cancer Cells via the MAPK/ERK and PI3K/Akt Pathways
Background Recently, a novel variant of ER-α, ER-α36 was identified and cloned. ER-α36 lacks intrinsic transcription activity and mainly mediates nongenomic estrogen signaling. Here, we studied the role of nongenomic estrogen signaling pathways mediated by ER-α36 in tamoxifen resistance and agonist...
Saved in:
Published in: | PloS one 2010-02, Vol.5 (2), p.e9013 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background Recently, a novel variant of ER-α, ER-α36 was identified and cloned. ER-α36 lacks intrinsic transcription activity and mainly mediates nongenomic estrogen signaling. Here, we studied the role of nongenomic estrogen signaling pathways mediated by ER-α36 in tamoxifen resistance and agonist action. Methodology The cellular localization of ER-α36 was examined by immunofluorescence in MCF-7 cells and Hec1A cells. MCF-7 breast cancer cells, MCF-7 cells expressing recombinant ER-α36 (MCF-7/ER36), Hec1A endometrial cancer cells and Hec1A cells with siRNA knockdown of ER-α36 (Hec1A/RNAiER36) were treated with 17β-estradial (E2) and tamoxifen (TAM) in the absence and presence of kinase inhibitor U0126 and LY294002. We examined phosphorylation of signaling molecules and the expression of c-Myc by immunoblotting, and tumor cell growth by MTT assay. Conclusions ER variant ER-α36 enhances TAM agonist activity through activation of the membrane-initiated signaling pathways in endometrial cancer, and that ER-α36 is involved in de novo and acquired TAM resistance in breast cancer. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0009013 |