Loading…
Columnar connectivity and laminar processing in cat primary auditory cortex
Radial intra- and interlaminar connections form a basic microcircuit in primary auditory cortex (AI) that extracts acoustic information and distributes it to cortical and subcortical networks. Though the structure of this microcircuit is known, we do not know how the functional connectivity between...
Saved in:
Published in: | PloS one 2010-03, Vol.5 (3), p.e9521 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c757t-1e38ae9efe47e0b2f7b0ac9905d503c0ca13ded9f3fa8f5e008c2a1686f0d7783 |
---|---|
cites | |
container_end_page | |
container_issue | 3 |
container_start_page | e9521 |
container_title | PloS one |
container_volume | 5 |
creator | Atencio, Craig A Schreiner, Christoph E |
description | Radial intra- and interlaminar connections form a basic microcircuit in primary auditory cortex (AI) that extracts acoustic information and distributes it to cortical and subcortical networks. Though the structure of this microcircuit is known, we do not know how the functional connectivity between layers relates to laminar processing.
We studied the relationships between functional connectivity and receptive field properties in this columnar microcircuit by simultaneously recording from single neurons in cat AI in response to broadband dynamic moving ripple stimuli. We used spectrotemporal receptive fields (STRFs) to estimate the relationship between receptive field parameters and the functional connectivity between pairs of neurons. Interlaminar connectivity obtained through cross-covariance analysis reflected a consistent pattern of information flow from thalamic input layers to cortical output layers. Connection strength and STRF similarity were greatest for intralaminar neuron pairs and in supragranular layers and weaker for interlaminar projections. Interlaminar connection strength co-varied with several STRF parameters: feature selectivity, phase locking to the stimulus envelope, best temporal modulation frequency, and best spectral modulation frequency. Connectivity properties and receptive field relationships differed for vertical and horizontal connections.
Thus, the mode of local processing in supragranular layers differs from that in infragranular layers. Therefore, specific connectivity patterns in the auditory cortex shape the flow of information and constrain how spectrotemporal processing transformations progress in the canonical columnar auditory microcircuit. |
doi_str_mv | 10.1371/journal.pone.0009521 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289427371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473910453</galeid><doaj_id>oai_doaj_org_article_7f765734776b47efa75a2cf204d36b95</doaj_id><sourcerecordid>A473910453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c757t-1e38ae9efe47e0b2f7b0ac9905d503c0ca13ded9f3fa8f5e008c2a1686f0d7783</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqXwDxCshATisMvYTuL4glSt-FhRqRJfV8vrjHddJfbWdir493jZtNqgHnAOtsbPvJ7MvEXxnMCCME7eXfkhONUtdt7hAgBERcmD4pQIRuc1Bfbw6HxSPInxCqBiTV0_Lk4oUBAg6GnxZem7oXcqzLR3DnWyNzb9ninXzjrV2_3FLniNMVq3mVk30yrliO1VyNTQ2uTzQfuQ8NfT4pFRXcRn435W_Pj44fvy8_zi8tNqeX4x17ziaU6QNQoFGiw5wpoavgalhYCqrYBp0IqwFlthmFGNqRCg0VSRuqkNtJw37Kx4edDddT7KsQ9REtqIkvLcm0ysDkTr1ZUcy5VeWfk34MNGqpCs7lByw-uKs5Lzep3rMYpXimpDoWxZvRZV1no_vjase2w1uhRUNxGd3ji7lRt_I2nDCHCRBd6MAsFfDxiT7G3U2HXKoR-i5IxVTZlXJl_9Q97_cyO1Ubl-64zPz-q9pjwvORMEyoplanEPlb8We5tnjcbm-CTh7SQhM3mmaaOGGOXq29f_Zy9_TtnXR-wWVZe2MZsuWe_iFCwPoA4-xoDmrscE5N7yt92Qe8vL0fI57cXxfO6Sbj3O_gD_lPvu</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289427371</pqid></control><display><type>article</type><title>Columnar connectivity and laminar processing in cat primary auditory cortex</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Atencio, Craig A ; Schreiner, Christoph E</creator><contributor>Grothe, Benedikt</contributor><creatorcontrib>Atencio, Craig A ; Schreiner, Christoph E ; Grothe, Benedikt</creatorcontrib><description>Radial intra- and interlaminar connections form a basic microcircuit in primary auditory cortex (AI) that extracts acoustic information and distributes it to cortical and subcortical networks. Though the structure of this microcircuit is known, we do not know how the functional connectivity between layers relates to laminar processing.
We studied the relationships between functional connectivity and receptive field properties in this columnar microcircuit by simultaneously recording from single neurons in cat AI in response to broadband dynamic moving ripple stimuli. We used spectrotemporal receptive fields (STRFs) to estimate the relationship between receptive field parameters and the functional connectivity between pairs of neurons. Interlaminar connectivity obtained through cross-covariance analysis reflected a consistent pattern of information flow from thalamic input layers to cortical output layers. Connection strength and STRF similarity were greatest for intralaminar neuron pairs and in supragranular layers and weaker for interlaminar projections. Interlaminar connection strength co-varied with several STRF parameters: feature selectivity, phase locking to the stimulus envelope, best temporal modulation frequency, and best spectral modulation frequency. Connectivity properties and receptive field relationships differed for vertical and horizontal connections.
Thus, the mode of local processing in supragranular layers differs from that in infragranular layers. Therefore, specific connectivity patterns in the auditory cortex shape the flow of information and constrain how spectrotemporal processing transformations progress in the canonical columnar auditory microcircuit.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0009521</identifier><identifier>PMID: 20209092</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acoustic Stimulation ; Animals ; Auditory Cortex - physiology ; Auditory Perception - physiology ; Bioengineering ; Broadband ; Cats ; Circuits ; Computer Simulation ; Cortex (auditory) ; Cortex (temporal) ; Covariance ; Electrophysiology ; Frequency dependence ; Information flow ; Information management ; Information processing ; Laboratories ; Models, Neurological ; Models, Statistical ; Modulation ; Neural networks ; Neurons ; Neurons - metabolism ; Neurons - pathology ; Neuroscience ; Neuroscience/Behavioral Neuroscience ; Neuroscience/Sensory Systems ; Neurosciences ; Otolaryngology ; Receptive field ; Selectivity ; Studies ; Surgery ; Synapses ; Thalamus ; Thalamus - physiology ; Time Factors</subject><ispartof>PloS one, 2010-03, Vol.5 (3), p.e9521</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Atencio, Schreiner. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Atencio, Schreiner. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c757t-1e38ae9efe47e0b2f7b0ac9905d503c0ca13ded9f3fa8f5e008c2a1686f0d7783</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1289427371/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1289427371?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20209092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Grothe, Benedikt</contributor><creatorcontrib>Atencio, Craig A</creatorcontrib><creatorcontrib>Schreiner, Christoph E</creatorcontrib><title>Columnar connectivity and laminar processing in cat primary auditory cortex</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Radial intra- and interlaminar connections form a basic microcircuit in primary auditory cortex (AI) that extracts acoustic information and distributes it to cortical and subcortical networks. Though the structure of this microcircuit is known, we do not know how the functional connectivity between layers relates to laminar processing.
We studied the relationships between functional connectivity and receptive field properties in this columnar microcircuit by simultaneously recording from single neurons in cat AI in response to broadband dynamic moving ripple stimuli. We used spectrotemporal receptive fields (STRFs) to estimate the relationship between receptive field parameters and the functional connectivity between pairs of neurons. Interlaminar connectivity obtained through cross-covariance analysis reflected a consistent pattern of information flow from thalamic input layers to cortical output layers. Connection strength and STRF similarity were greatest for intralaminar neuron pairs and in supragranular layers and weaker for interlaminar projections. Interlaminar connection strength co-varied with several STRF parameters: feature selectivity, phase locking to the stimulus envelope, best temporal modulation frequency, and best spectral modulation frequency. Connectivity properties and receptive field relationships differed for vertical and horizontal connections.
Thus, the mode of local processing in supragranular layers differs from that in infragranular layers. Therefore, specific connectivity patterns in the auditory cortex shape the flow of information and constrain how spectrotemporal processing transformations progress in the canonical columnar auditory microcircuit.</description><subject>Acoustic Stimulation</subject><subject>Animals</subject><subject>Auditory Cortex - physiology</subject><subject>Auditory Perception - physiology</subject><subject>Bioengineering</subject><subject>Broadband</subject><subject>Cats</subject><subject>Circuits</subject><subject>Computer Simulation</subject><subject>Cortex (auditory)</subject><subject>Cortex (temporal)</subject><subject>Covariance</subject><subject>Electrophysiology</subject><subject>Frequency dependence</subject><subject>Information flow</subject><subject>Information management</subject><subject>Information processing</subject><subject>Laboratories</subject><subject>Models, Neurological</subject><subject>Models, Statistical</subject><subject>Modulation</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Neuroscience</subject><subject>Neuroscience/Behavioral Neuroscience</subject><subject>Neuroscience/Sensory Systems</subject><subject>Neurosciences</subject><subject>Otolaryngology</subject><subject>Receptive field</subject><subject>Selectivity</subject><subject>Studies</subject><subject>Surgery</subject><subject>Synapses</subject><subject>Thalamus</subject><subject>Thalamus - physiology</subject><subject>Time Factors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v1DAQhiMEoqXwDxCshATisMvYTuL4glSt-FhRqRJfV8vrjHddJfbWdir493jZtNqgHnAOtsbPvJ7MvEXxnMCCME7eXfkhONUtdt7hAgBERcmD4pQIRuc1Bfbw6HxSPInxCqBiTV0_Lk4oUBAg6GnxZem7oXcqzLR3DnWyNzb9ninXzjrV2_3FLniNMVq3mVk30yrliO1VyNTQ2uTzQfuQ8NfT4pFRXcRn435W_Pj44fvy8_zi8tNqeX4x17ziaU6QNQoFGiw5wpoavgalhYCqrYBp0IqwFlthmFGNqRCg0VSRuqkNtJw37Kx4edDddT7KsQ9REtqIkvLcm0ysDkTr1ZUcy5VeWfk34MNGqpCs7lByw-uKs5Lzep3rMYpXimpDoWxZvRZV1no_vjase2w1uhRUNxGd3ji7lRt_I2nDCHCRBd6MAsFfDxiT7G3U2HXKoR-i5IxVTZlXJl_9Q97_cyO1Ubl-64zPz-q9pjwvORMEyoplanEPlb8We5tnjcbm-CTh7SQhM3mmaaOGGOXq29f_Zy9_TtnXR-wWVZe2MZsuWe_iFCwPoA4-xoDmrscE5N7yt92Qe8vL0fI57cXxfO6Sbj3O_gD_lPvu</recordid><startdate>20100303</startdate><enddate>20100303</enddate><creator>Atencio, Craig A</creator><creator>Schreiner, Christoph E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100303</creationdate><title>Columnar connectivity and laminar processing in cat primary auditory cortex</title><author>Atencio, Craig A ; Schreiner, Christoph E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c757t-1e38ae9efe47e0b2f7b0ac9905d503c0ca13ded9f3fa8f5e008c2a1686f0d7783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acoustic Stimulation</topic><topic>Animals</topic><topic>Auditory Cortex - physiology</topic><topic>Auditory Perception - physiology</topic><topic>Bioengineering</topic><topic>Broadband</topic><topic>Cats</topic><topic>Circuits</topic><topic>Computer Simulation</topic><topic>Cortex (auditory)</topic><topic>Cortex (temporal)</topic><topic>Covariance</topic><topic>Electrophysiology</topic><topic>Frequency dependence</topic><topic>Information flow</topic><topic>Information management</topic><topic>Information processing</topic><topic>Laboratories</topic><topic>Models, Neurological</topic><topic>Models, Statistical</topic><topic>Modulation</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Neuroscience</topic><topic>Neuroscience/Behavioral Neuroscience</topic><topic>Neuroscience/Sensory Systems</topic><topic>Neurosciences</topic><topic>Otolaryngology</topic><topic>Receptive field</topic><topic>Selectivity</topic><topic>Studies</topic><topic>Surgery</topic><topic>Synapses</topic><topic>Thalamus</topic><topic>Thalamus - physiology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atencio, Craig A</creatorcontrib><creatorcontrib>Schreiner, Christoph E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atencio, Craig A</au><au>Schreiner, Christoph E</au><au>Grothe, Benedikt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Columnar connectivity and laminar processing in cat primary auditory cortex</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-03-03</date><risdate>2010</risdate><volume>5</volume><issue>3</issue><spage>e9521</spage><pages>e9521-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Radial intra- and interlaminar connections form a basic microcircuit in primary auditory cortex (AI) that extracts acoustic information and distributes it to cortical and subcortical networks. Though the structure of this microcircuit is known, we do not know how the functional connectivity between layers relates to laminar processing.
We studied the relationships between functional connectivity and receptive field properties in this columnar microcircuit by simultaneously recording from single neurons in cat AI in response to broadband dynamic moving ripple stimuli. We used spectrotemporal receptive fields (STRFs) to estimate the relationship between receptive field parameters and the functional connectivity between pairs of neurons. Interlaminar connectivity obtained through cross-covariance analysis reflected a consistent pattern of information flow from thalamic input layers to cortical output layers. Connection strength and STRF similarity were greatest for intralaminar neuron pairs and in supragranular layers and weaker for interlaminar projections. Interlaminar connection strength co-varied with several STRF parameters: feature selectivity, phase locking to the stimulus envelope, best temporal modulation frequency, and best spectral modulation frequency. Connectivity properties and receptive field relationships differed for vertical and horizontal connections.
Thus, the mode of local processing in supragranular layers differs from that in infragranular layers. Therefore, specific connectivity patterns in the auditory cortex shape the flow of information and constrain how spectrotemporal processing transformations progress in the canonical columnar auditory microcircuit.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20209092</pmid><doi>10.1371/journal.pone.0009521</doi><tpages>e9521</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2010-03, Vol.5 (3), p.e9521 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1289427371 |
source | Publicly Available Content Database; PubMed Central |
subjects | Acoustic Stimulation Animals Auditory Cortex - physiology Auditory Perception - physiology Bioengineering Broadband Cats Circuits Computer Simulation Cortex (auditory) Cortex (temporal) Covariance Electrophysiology Frequency dependence Information flow Information management Information processing Laboratories Models, Neurological Models, Statistical Modulation Neural networks Neurons Neurons - metabolism Neurons - pathology Neuroscience Neuroscience/Behavioral Neuroscience Neuroscience/Sensory Systems Neurosciences Otolaryngology Receptive field Selectivity Studies Surgery Synapses Thalamus Thalamus - physiology Time Factors |
title | Columnar connectivity and laminar processing in cat primary auditory cortex |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A01%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Columnar%20connectivity%20and%20laminar%20processing%20in%20cat%20primary%20auditory%20cortex&rft.jtitle=PloS%20one&rft.au=Atencio,%20Craig%20A&rft.date=2010-03-03&rft.volume=5&rft.issue=3&rft.spage=e9521&rft.pages=e9521-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0009521&rft_dat=%3Cgale_plos_%3EA473910453%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c757t-1e38ae9efe47e0b2f7b0ac9905d503c0ca13ded9f3fa8f5e008c2a1686f0d7783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1289427371&rft_id=info:pmid/20209092&rft_galeid=A473910453&rfr_iscdi=true |