Loading…
Cooperative interactions between TLR4 and TLR9 regulate interleukin 23 and 17 production in a murine model of gram negative bacterial pneumonia
Toll like receptors play an important role in lung host defense against bacterial pathogens. In this study, we investigated independent and cooperative functions of TLR4 and TLR9 in microbial clearance and systemic dissemination during Gram-negative bacterial pneumonia. To access these responses, wi...
Saved in:
Published in: | PloS one 2010-03, Vol.5 (3), p.e9896-e9896 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Toll like receptors play an important role in lung host defense against bacterial pathogens. In this study, we investigated independent and cooperative functions of TLR4 and TLR9 in microbial clearance and systemic dissemination during Gram-negative bacterial pneumonia. To access these responses, wildtype Balb/c mice, mice with defective TLR4 signaling (TLR4(lps-d)), mice deficient in TLR9 (TLR9(-/-)) and TLR4/9 double mutant mice (TLR4(lps-d)/TLR9(-/-)) were challenged with K. pneumoniae, then time-dependent lung bacterial clearance and systemic dissemination determined. We found impaired lung bacterial clearance in TLR4 and TLR9 single mutant mice, whereas the greatest impairment in clearance was observed in TLR4(lps-d)/TLR9(-/-) double mutant mice. Early lung expression of TNF-alpha, IL-12, and chemokines was TLR4 dependent, while IFN-gamma production and the later expression of TNF-alpha and IL-12 was dependent on TLR9. Classical activation of lung macrophages and maximal induction of IL-23 and IL-17 required both TLR4 and TLR9. Finally, the i.t. instillation of IL-17 partially restored anti-bacterial immunity in TLR4(lps-d)/TLR9(-/-) double mutant mice. In conclusion, our studies indicate that TLR4 and TLR9 have both non-redundant and cooperative roles in lung innate responses during Gram-negative bacterial pneumonia and are both critical for IL-17 driven antibacterial host response. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0009896 |