Loading…

An unusual helix turn helix motif in the catalytic core of HIV-1 integrase binds viral DNA and LEDGF

Integrase (IN) of the type 1 human immunodeficiency virus (HIV-1) catalyzes the integration of viral DNA into host cellular DNA. We identified a bi-helix motif (residues 149-186) in the crystal structure of the catalytic core (CC) of the IN-Phe185Lys variant that consists of the alpha(4) and alpha(5...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2009, Vol.4 (1), p.e4081-e4081
Main Authors: Merad, Hayate, Porumb, Horea, Zargarian, Loussiné, René, Brigitte, Hobaika, Zeina, Maroun, Richard G, Mauffret, Olivier, Fermandjian, Serge
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c657t-a7f60e96211d6d48a97fa38e487c7d26e8b52bc641a92f4b94c54a90b961f4013
cites cdi_FETCH-LOGICAL-c657t-a7f60e96211d6d48a97fa38e487c7d26e8b52bc641a92f4b94c54a90b961f4013
container_end_page e4081
container_issue 1
container_start_page e4081
container_title PloS one
container_volume 4
creator Merad, Hayate
Porumb, Horea
Zargarian, Loussiné
René, Brigitte
Hobaika, Zeina
Maroun, Richard G
Mauffret, Olivier
Fermandjian, Serge
description Integrase (IN) of the type 1 human immunodeficiency virus (HIV-1) catalyzes the integration of viral DNA into host cellular DNA. We identified a bi-helix motif (residues 149-186) in the crystal structure of the catalytic core (CC) of the IN-Phe185Lys variant that consists of the alpha(4) and alpha(5) helices connected by a 3 to 5-residue turn. The motif is embedded in a large array of interactions that stabilize the monomer and the dimer. We describe the conformational and binding properties of the corresponding synthetic peptide. This displays features of the protein motif structure thanks to the mutual intramolecular interactions of the alpha(4) and alpha(5) helices that maintain the fold. The main properties are the binding to: 1- the processing-attachment site at the LTR (long terminal repeat) ends of virus DNA with a K(d) (dissociation constant) in the sub-micromolar range; 2- the whole IN enzyme; and 3- the IN binding domain (IBD) but not the IBD-Asp366Asn variant of LEDGF (lens epidermal derived growth factor) lacking the essential Asp366 residue. In our motif, in contrast to the conventional HTH (helix-turn-helix), it is the N terminal helix (alpha(4)) which has the role of DNA recognition helix, while the C terminal helix (alpha(5)) would rather contribute to the motif stabilization by interactions with the alpha(4) helix. The motif, termed HTHi (i, for inverted) emerges as a central piece of the IN structure and function. It could therefore represent an attractive target in the search for inhibitors working at the DNA-IN, IN-IN and IN-LEDGF interfaces.
doi_str_mv 10.1371/journal.pone.0004081
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289490250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473426297</galeid><doaj_id>oai_doaj_org_article_4a82602a46064e0dbafb330d8c01ea02</doaj_id><sourcerecordid>A473426297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c657t-a7f60e96211d6d48a97fa38e487c7d26e8b52bc641a92f4b94c54a90b961f4013</originalsourceid><addsrcrecordid>eNqNk11r2zAUhs3YWLtu_2BsgkGhF8mOPiJbN4PQrwTCCvvorZBlOVFxpMySQ_vvJzfelpTBhi8sznnOe_Qe-2TZWwxjTHP88c53rVPNeOOdGQMAgwI_y46xoGTECdDne-ej7FUIdwATWnD-MjvCAvc5epxVU4c614VONWhlGnuPYpIdjmsfbY2sQ3FlkFZRNQ_RaqR9a5Cv0Wx-O8IpHc2yVcGg0roqoK1tk9bF5ylSrkKLy4vrq9fZi1o1wbwZ3ifZ96vLb-ez0eLmen4-XYw0n-RxpPKagxGcYFzxihVK5LWihWFFrvOKcFOUE1JqzrASpGalYHrClIBScFwzwPQke7_T3TQ-yGFAQWJSCCaATCAR8x1ReXUnN61dq_ZBemXlY8C3S6na5LExkqmCcCCKceDMQFWquqQUqkIDNgpI0vo0dOvKtam0cTE5PxA9zDi7kku_lUk2B9Jf5mwnsHpSNpsuZB8DoEwUgm97a6dDs9b_6EyIcm2DNk2jnPFdkJznBScU_gmmvsCFyBP44Qn494GNd9RSpZlYV_tkRaenMmur069X2xSfspwywsmj7NlBQWKiuY9L1YUg51-__D97c3vInu6xK6OauAq-6aL1LhyCbAfq1ofQmvr3aDHIfnN--ZT95shhc1LZu_2v-adoWBX6E563EJI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289490250</pqid></control><display><type>article</type><title>An unusual helix turn helix motif in the catalytic core of HIV-1 integrase binds viral DNA and LEDGF</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Merad, Hayate ; Porumb, Horea ; Zargarian, Loussiné ; René, Brigitte ; Hobaika, Zeina ; Maroun, Richard G ; Mauffret, Olivier ; Fermandjian, Serge</creator><contributor>Buckle, Ashley M.</contributor><creatorcontrib>Merad, Hayate ; Porumb, Horea ; Zargarian, Loussiné ; René, Brigitte ; Hobaika, Zeina ; Maroun, Richard G ; Mauffret, Olivier ; Fermandjian, Serge ; Buckle, Ashley M.</creatorcontrib><description>Integrase (IN) of the type 1 human immunodeficiency virus (HIV-1) catalyzes the integration of viral DNA into host cellular DNA. We identified a bi-helix motif (residues 149-186) in the crystal structure of the catalytic core (CC) of the IN-Phe185Lys variant that consists of the alpha(4) and alpha(5) helices connected by a 3 to 5-residue turn. The motif is embedded in a large array of interactions that stabilize the monomer and the dimer. We describe the conformational and binding properties of the corresponding synthetic peptide. This displays features of the protein motif structure thanks to the mutual intramolecular interactions of the alpha(4) and alpha(5) helices that maintain the fold. The main properties are the binding to: 1- the processing-attachment site at the LTR (long terminal repeat) ends of virus DNA with a K(d) (dissociation constant) in the sub-micromolar range; 2- the whole IN enzyme; and 3- the IN binding domain (IBD) but not the IBD-Asp366Asn variant of LEDGF (lens epidermal derived growth factor) lacking the essential Asp366 residue. In our motif, in contrast to the conventional HTH (helix-turn-helix), it is the N terminal helix (alpha(4)) which has the role of DNA recognition helix, while the C terminal helix (alpha(5)) would rather contribute to the motif stabilization by interactions with the alpha(4) helix. The motif, termed HTHi (i, for inverted) emerges as a central piece of the IN structure and function. It could therefore represent an attractive target in the search for inhibitors working at the DNA-IN, IN-IN and IN-LEDGF interfaces.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0004081</identifier><identifier>PMID: 19119323</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Amino acids ; Binding ; Biochemistry, Molecular Biology ; Biochemistry/Drug Discovery ; Biochemistry/Experimental Biophysical Methods ; Biochemistry/Protein Chemistry ; Biochemistry/Protein Folding ; Biophysics/Biomacromolecule-Ligand Interactions ; Biophysics/Protein Folding ; Catalysis ; Computational Biology/Macromolecular Structure Analysis ; Crystal structure ; Deoxyribonucleic acid ; Dissociation ; DNA ; DNA, Viral - metabolism ; E coli ; Enzymes ; Escherichia coli ; Genomes ; Helices ; Helix-Turn-Helix Motifs ; HIV ; HIV Integrase - chemistry ; HIV Integrase - genetics ; HIV Integrase - metabolism ; HIV-1 - enzymology ; Human immunodeficiency virus ; Human immunodeficiency virus 1 ; Humans ; Integrase ; Intercellular Signaling Peptides and Proteins - metabolism ; Interfaces ; Life Sciences ; Ligands ; Long terminal repeat ; Models, Molecular ; Molecular Sequence Data ; Oligonucleotides - chemistry ; Oligonucleotides - genetics ; Oligonucleotides - metabolism ; Peptides ; Peptides - chemistry ; Peptides - genetics ; Peptides - metabolism ; Protein Binding ; Protein structure ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins ; Structure-function relationships ; Viruses</subject><ispartof>PloS one, 2009, Vol.4 (1), p.e4081-e4081</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>2009 Merad et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Merad et al. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c657t-a7f60e96211d6d48a97fa38e487c7d26e8b52bc641a92f4b94c54a90b961f4013</citedby><cites>FETCH-LOGICAL-c657t-a7f60e96211d6d48a97fa38e487c7d26e8b52bc641a92f4b94c54a90b961f4013</cites><orcidid>0000-0002-3922-5317 ; 0000-0001-9836-6876 ; 0000-0003-0025-0475 ; 0000-0002-0697-2535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1289490250/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1289490250?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,25731,27900,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19119323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00349896$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Buckle, Ashley M.</contributor><creatorcontrib>Merad, Hayate</creatorcontrib><creatorcontrib>Porumb, Horea</creatorcontrib><creatorcontrib>Zargarian, Loussiné</creatorcontrib><creatorcontrib>René, Brigitte</creatorcontrib><creatorcontrib>Hobaika, Zeina</creatorcontrib><creatorcontrib>Maroun, Richard G</creatorcontrib><creatorcontrib>Mauffret, Olivier</creatorcontrib><creatorcontrib>Fermandjian, Serge</creatorcontrib><title>An unusual helix turn helix motif in the catalytic core of HIV-1 integrase binds viral DNA and LEDGF</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Integrase (IN) of the type 1 human immunodeficiency virus (HIV-1) catalyzes the integration of viral DNA into host cellular DNA. We identified a bi-helix motif (residues 149-186) in the crystal structure of the catalytic core (CC) of the IN-Phe185Lys variant that consists of the alpha(4) and alpha(5) helices connected by a 3 to 5-residue turn. The motif is embedded in a large array of interactions that stabilize the monomer and the dimer. We describe the conformational and binding properties of the corresponding synthetic peptide. This displays features of the protein motif structure thanks to the mutual intramolecular interactions of the alpha(4) and alpha(5) helices that maintain the fold. The main properties are the binding to: 1- the processing-attachment site at the LTR (long terminal repeat) ends of virus DNA with a K(d) (dissociation constant) in the sub-micromolar range; 2- the whole IN enzyme; and 3- the IN binding domain (IBD) but not the IBD-Asp366Asn variant of LEDGF (lens epidermal derived growth factor) lacking the essential Asp366 residue. In our motif, in contrast to the conventional HTH (helix-turn-helix), it is the N terminal helix (alpha(4)) which has the role of DNA recognition helix, while the C terminal helix (alpha(5)) would rather contribute to the motif stabilization by interactions with the alpha(4) helix. The motif, termed HTHi (i, for inverted) emerges as a central piece of the IN structure and function. It could therefore represent an attractive target in the search for inhibitors working at the DNA-IN, IN-IN and IN-LEDGF interfaces.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Binding</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biochemistry/Drug Discovery</subject><subject>Biochemistry/Experimental Biophysical Methods</subject><subject>Biochemistry/Protein Chemistry</subject><subject>Biochemistry/Protein Folding</subject><subject>Biophysics/Biomacromolecule-Ligand Interactions</subject><subject>Biophysics/Protein Folding</subject><subject>Catalysis</subject><subject>Computational Biology/Macromolecular Structure Analysis</subject><subject>Crystal structure</subject><subject>Deoxyribonucleic acid</subject><subject>Dissociation</subject><subject>DNA</subject><subject>DNA, Viral - metabolism</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Genomes</subject><subject>Helices</subject><subject>Helix-Turn-Helix Motifs</subject><subject>HIV</subject><subject>HIV Integrase - chemistry</subject><subject>HIV Integrase - genetics</subject><subject>HIV Integrase - metabolism</subject><subject>HIV-1 - enzymology</subject><subject>Human immunodeficiency virus</subject><subject>Human immunodeficiency virus 1</subject><subject>Humans</subject><subject>Integrase</subject><subject>Intercellular Signaling Peptides and Proteins - metabolism</subject><subject>Interfaces</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Long terminal repeat</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Oligonucleotides - chemistry</subject><subject>Oligonucleotides - genetics</subject><subject>Oligonucleotides - metabolism</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Peptides - genetics</subject><subject>Peptides - metabolism</subject><subject>Protein Binding</subject><subject>Protein structure</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Structure-function relationships</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11r2zAUhs3YWLtu_2BsgkGhF8mOPiJbN4PQrwTCCvvorZBlOVFxpMySQ_vvJzfelpTBhi8sznnOe_Qe-2TZWwxjTHP88c53rVPNeOOdGQMAgwI_y46xoGTECdDne-ej7FUIdwATWnD-MjvCAvc5epxVU4c614VONWhlGnuPYpIdjmsfbY2sQ3FlkFZRNQ_RaqR9a5Cv0Wx-O8IpHc2yVcGg0roqoK1tk9bF5ylSrkKLy4vrq9fZi1o1wbwZ3ifZ96vLb-ez0eLmen4-XYw0n-RxpPKagxGcYFzxihVK5LWihWFFrvOKcFOUE1JqzrASpGalYHrClIBScFwzwPQke7_T3TQ-yGFAQWJSCCaATCAR8x1ReXUnN61dq_ZBemXlY8C3S6na5LExkqmCcCCKceDMQFWquqQUqkIDNgpI0vo0dOvKtam0cTE5PxA9zDi7kku_lUk2B9Jf5mwnsHpSNpsuZB8DoEwUgm97a6dDs9b_6EyIcm2DNk2jnPFdkJznBScU_gmmvsCFyBP44Qn494GNd9RSpZlYV_tkRaenMmur069X2xSfspwywsmj7NlBQWKiuY9L1YUg51-__D97c3vInu6xK6OauAq-6aL1LhyCbAfq1ofQmvr3aDHIfnN--ZT95shhc1LZu_2v-adoWBX6E563EJI</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Merad, Hayate</creator><creator>Porumb, Horea</creator><creator>Zargarian, Loussiné</creator><creator>René, Brigitte</creator><creator>Hobaika, Zeina</creator><creator>Maroun, Richard G</creator><creator>Mauffret, Olivier</creator><creator>Fermandjian, Serge</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3922-5317</orcidid><orcidid>https://orcid.org/0000-0001-9836-6876</orcidid><orcidid>https://orcid.org/0000-0003-0025-0475</orcidid><orcidid>https://orcid.org/0000-0002-0697-2535</orcidid></search><sort><creationdate>2009</creationdate><title>An unusual helix turn helix motif in the catalytic core of HIV-1 integrase binds viral DNA and LEDGF</title><author>Merad, Hayate ; Porumb, Horea ; Zargarian, Loussiné ; René, Brigitte ; Hobaika, Zeina ; Maroun, Richard G ; Mauffret, Olivier ; Fermandjian, Serge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c657t-a7f60e96211d6d48a97fa38e487c7d26e8b52bc641a92f4b94c54a90b961f4013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Binding</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biochemistry/Drug Discovery</topic><topic>Biochemistry/Experimental Biophysical Methods</topic><topic>Biochemistry/Protein Chemistry</topic><topic>Biochemistry/Protein Folding</topic><topic>Biophysics/Biomacromolecule-Ligand Interactions</topic><topic>Biophysics/Protein Folding</topic><topic>Catalysis</topic><topic>Computational Biology/Macromolecular Structure Analysis</topic><topic>Crystal structure</topic><topic>Deoxyribonucleic acid</topic><topic>Dissociation</topic><topic>DNA</topic><topic>DNA, Viral - metabolism</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Genomes</topic><topic>Helices</topic><topic>Helix-Turn-Helix Motifs</topic><topic>HIV</topic><topic>HIV Integrase - chemistry</topic><topic>HIV Integrase - genetics</topic><topic>HIV Integrase - metabolism</topic><topic>HIV-1 - enzymology</topic><topic>Human immunodeficiency virus</topic><topic>Human immunodeficiency virus 1</topic><topic>Humans</topic><topic>Integrase</topic><topic>Intercellular Signaling Peptides and Proteins - metabolism</topic><topic>Interfaces</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Long terminal repeat</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Oligonucleotides - chemistry</topic><topic>Oligonucleotides - genetics</topic><topic>Oligonucleotides - metabolism</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Peptides - genetics</topic><topic>Peptides - metabolism</topic><topic>Protein Binding</topic><topic>Protein structure</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Structure-function relationships</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merad, Hayate</creatorcontrib><creatorcontrib>Porumb, Horea</creatorcontrib><creatorcontrib>Zargarian, Loussiné</creatorcontrib><creatorcontrib>René, Brigitte</creatorcontrib><creatorcontrib>Hobaika, Zeina</creatorcontrib><creatorcontrib>Maroun, Richard G</creatorcontrib><creatorcontrib>Mauffret, Olivier</creatorcontrib><creatorcontrib>Fermandjian, Serge</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merad, Hayate</au><au>Porumb, Horea</au><au>Zargarian, Loussiné</au><au>René, Brigitte</au><au>Hobaika, Zeina</au><au>Maroun, Richard G</au><au>Mauffret, Olivier</au><au>Fermandjian, Serge</au><au>Buckle, Ashley M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An unusual helix turn helix motif in the catalytic core of HIV-1 integrase binds viral DNA and LEDGF</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2009</date><risdate>2009</risdate><volume>4</volume><issue>1</issue><spage>e4081</spage><epage>e4081</epage><pages>e4081-e4081</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Integrase (IN) of the type 1 human immunodeficiency virus (HIV-1) catalyzes the integration of viral DNA into host cellular DNA. We identified a bi-helix motif (residues 149-186) in the crystal structure of the catalytic core (CC) of the IN-Phe185Lys variant that consists of the alpha(4) and alpha(5) helices connected by a 3 to 5-residue turn. The motif is embedded in a large array of interactions that stabilize the monomer and the dimer. We describe the conformational and binding properties of the corresponding synthetic peptide. This displays features of the protein motif structure thanks to the mutual intramolecular interactions of the alpha(4) and alpha(5) helices that maintain the fold. The main properties are the binding to: 1- the processing-attachment site at the LTR (long terminal repeat) ends of virus DNA with a K(d) (dissociation constant) in the sub-micromolar range; 2- the whole IN enzyme; and 3- the IN binding domain (IBD) but not the IBD-Asp366Asn variant of LEDGF (lens epidermal derived growth factor) lacking the essential Asp366 residue. In our motif, in contrast to the conventional HTH (helix-turn-helix), it is the N terminal helix (alpha(4)) which has the role of DNA recognition helix, while the C terminal helix (alpha(5)) would rather contribute to the motif stabilization by interactions with the alpha(4) helix. The motif, termed HTHi (i, for inverted) emerges as a central piece of the IN structure and function. It could therefore represent an attractive target in the search for inhibitors working at the DNA-IN, IN-IN and IN-LEDGF interfaces.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19119323</pmid><doi>10.1371/journal.pone.0004081</doi><tpages>e4081</tpages><orcidid>https://orcid.org/0000-0002-3922-5317</orcidid><orcidid>https://orcid.org/0000-0001-9836-6876</orcidid><orcidid>https://orcid.org/0000-0003-0025-0475</orcidid><orcidid>https://orcid.org/0000-0002-0697-2535</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2009, Vol.4 (1), p.e4081-e4081
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1289490250
source Publicly Available Content Database; PubMed Central
subjects Amino Acid Sequence
Amino acids
Binding
Biochemistry, Molecular Biology
Biochemistry/Drug Discovery
Biochemistry/Experimental Biophysical Methods
Biochemistry/Protein Chemistry
Biochemistry/Protein Folding
Biophysics/Biomacromolecule-Ligand Interactions
Biophysics/Protein Folding
Catalysis
Computational Biology/Macromolecular Structure Analysis
Crystal structure
Deoxyribonucleic acid
Dissociation
DNA
DNA, Viral - metabolism
E coli
Enzymes
Escherichia coli
Genomes
Helices
Helix-Turn-Helix Motifs
HIV
HIV Integrase - chemistry
HIV Integrase - genetics
HIV Integrase - metabolism
HIV-1 - enzymology
Human immunodeficiency virus
Human immunodeficiency virus 1
Humans
Integrase
Intercellular Signaling Peptides and Proteins - metabolism
Interfaces
Life Sciences
Ligands
Long terminal repeat
Models, Molecular
Molecular Sequence Data
Oligonucleotides - chemistry
Oligonucleotides - genetics
Oligonucleotides - metabolism
Peptides
Peptides - chemistry
Peptides - genetics
Peptides - metabolism
Protein Binding
Protein structure
Protein Structure, Secondary
Protein Structure, Tertiary
Proteins
Structure-function relationships
Viruses
title An unusual helix turn helix motif in the catalytic core of HIV-1 integrase binds viral DNA and LEDGF
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A02%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20unusual%20helix%20turn%20helix%20motif%20in%20the%20catalytic%20core%20of%20HIV-1%20integrase%20binds%20viral%20DNA%20and%20LEDGF&rft.jtitle=PloS%20one&rft.au=Merad,%20Hayate&rft.date=2009&rft.volume=4&rft.issue=1&rft.spage=e4081&rft.epage=e4081&rft.pages=e4081-e4081&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0004081&rft_dat=%3Cgale_plos_%3EA473426297%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c657t-a7f60e96211d6d48a97fa38e487c7d26e8b52bc641a92f4b94c54a90b961f4013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1289490250&rft_id=info:pmid/19119323&rft_galeid=A473426297&rfr_iscdi=true