Loading…
An unusual helix turn helix motif in the catalytic core of HIV-1 integrase binds viral DNA and LEDGF
Integrase (IN) of the type 1 human immunodeficiency virus (HIV-1) catalyzes the integration of viral DNA into host cellular DNA. We identified a bi-helix motif (residues 149-186) in the crystal structure of the catalytic core (CC) of the IN-Phe185Lys variant that consists of the alpha(4) and alpha(5...
Saved in:
Published in: | PloS one 2009, Vol.4 (1), p.e4081-e4081 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c657t-a7f60e96211d6d48a97fa38e487c7d26e8b52bc641a92f4b94c54a90b961f4013 |
---|---|
cites | cdi_FETCH-LOGICAL-c657t-a7f60e96211d6d48a97fa38e487c7d26e8b52bc641a92f4b94c54a90b961f4013 |
container_end_page | e4081 |
container_issue | 1 |
container_start_page | e4081 |
container_title | PloS one |
container_volume | 4 |
creator | Merad, Hayate Porumb, Horea Zargarian, Loussiné René, Brigitte Hobaika, Zeina Maroun, Richard G Mauffret, Olivier Fermandjian, Serge |
description | Integrase (IN) of the type 1 human immunodeficiency virus (HIV-1) catalyzes the integration of viral DNA into host cellular DNA. We identified a bi-helix motif (residues 149-186) in the crystal structure of the catalytic core (CC) of the IN-Phe185Lys variant that consists of the alpha(4) and alpha(5) helices connected by a 3 to 5-residue turn. The motif is embedded in a large array of interactions that stabilize the monomer and the dimer.
We describe the conformational and binding properties of the corresponding synthetic peptide. This displays features of the protein motif structure thanks to the mutual intramolecular interactions of the alpha(4) and alpha(5) helices that maintain the fold. The main properties are the binding to: 1- the processing-attachment site at the LTR (long terminal repeat) ends of virus DNA with a K(d) (dissociation constant) in the sub-micromolar range; 2- the whole IN enzyme; and 3- the IN binding domain (IBD) but not the IBD-Asp366Asn variant of LEDGF (lens epidermal derived growth factor) lacking the essential Asp366 residue. In our motif, in contrast to the conventional HTH (helix-turn-helix), it is the N terminal helix (alpha(4)) which has the role of DNA recognition helix, while the C terminal helix (alpha(5)) would rather contribute to the motif stabilization by interactions with the alpha(4) helix.
The motif, termed HTHi (i, for inverted) emerges as a central piece of the IN structure and function. It could therefore represent an attractive target in the search for inhibitors working at the DNA-IN, IN-IN and IN-LEDGF interfaces. |
doi_str_mv | 10.1371/journal.pone.0004081 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1289490250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473426297</galeid><doaj_id>oai_doaj_org_article_4a82602a46064e0dbafb330d8c01ea02</doaj_id><sourcerecordid>A473426297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c657t-a7f60e96211d6d48a97fa38e487c7d26e8b52bc641a92f4b94c54a90b961f4013</originalsourceid><addsrcrecordid>eNqNk11r2zAUhs3YWLtu_2BsgkGhF8mOPiJbN4PQrwTCCvvorZBlOVFxpMySQ_vvJzfelpTBhi8sznnOe_Qe-2TZWwxjTHP88c53rVPNeOOdGQMAgwI_y46xoGTECdDne-ej7FUIdwATWnD-MjvCAvc5epxVU4c614VONWhlGnuPYpIdjmsfbY2sQ3FlkFZRNQ_RaqR9a5Cv0Wx-O8IpHc2yVcGg0roqoK1tk9bF5ylSrkKLy4vrq9fZi1o1wbwZ3ifZ96vLb-ez0eLmen4-XYw0n-RxpPKagxGcYFzxihVK5LWihWFFrvOKcFOUE1JqzrASpGalYHrClIBScFwzwPQke7_T3TQ-yGFAQWJSCCaATCAR8x1ReXUnN61dq_ZBemXlY8C3S6na5LExkqmCcCCKceDMQFWquqQUqkIDNgpI0vo0dOvKtam0cTE5PxA9zDi7kku_lUk2B9Jf5mwnsHpSNpsuZB8DoEwUgm97a6dDs9b_6EyIcm2DNk2jnPFdkJznBScU_gmmvsCFyBP44Qn494GNd9RSpZlYV_tkRaenMmur069X2xSfspwywsmj7NlBQWKiuY9L1YUg51-__D97c3vInu6xK6OauAq-6aL1LhyCbAfq1ofQmvr3aDHIfnN--ZT95shhc1LZu_2v-adoWBX6E563EJI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289490250</pqid></control><display><type>article</type><title>An unusual helix turn helix motif in the catalytic core of HIV-1 integrase binds viral DNA and LEDGF</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Merad, Hayate ; Porumb, Horea ; Zargarian, Loussiné ; René, Brigitte ; Hobaika, Zeina ; Maroun, Richard G ; Mauffret, Olivier ; Fermandjian, Serge</creator><contributor>Buckle, Ashley M.</contributor><creatorcontrib>Merad, Hayate ; Porumb, Horea ; Zargarian, Loussiné ; René, Brigitte ; Hobaika, Zeina ; Maroun, Richard G ; Mauffret, Olivier ; Fermandjian, Serge ; Buckle, Ashley M.</creatorcontrib><description>Integrase (IN) of the type 1 human immunodeficiency virus (HIV-1) catalyzes the integration of viral DNA into host cellular DNA. We identified a bi-helix motif (residues 149-186) in the crystal structure of the catalytic core (CC) of the IN-Phe185Lys variant that consists of the alpha(4) and alpha(5) helices connected by a 3 to 5-residue turn. The motif is embedded in a large array of interactions that stabilize the monomer and the dimer.
We describe the conformational and binding properties of the corresponding synthetic peptide. This displays features of the protein motif structure thanks to the mutual intramolecular interactions of the alpha(4) and alpha(5) helices that maintain the fold. The main properties are the binding to: 1- the processing-attachment site at the LTR (long terminal repeat) ends of virus DNA with a K(d) (dissociation constant) in the sub-micromolar range; 2- the whole IN enzyme; and 3- the IN binding domain (IBD) but not the IBD-Asp366Asn variant of LEDGF (lens epidermal derived growth factor) lacking the essential Asp366 residue. In our motif, in contrast to the conventional HTH (helix-turn-helix), it is the N terminal helix (alpha(4)) which has the role of DNA recognition helix, while the C terminal helix (alpha(5)) would rather contribute to the motif stabilization by interactions with the alpha(4) helix.
The motif, termed HTHi (i, for inverted) emerges as a central piece of the IN structure and function. It could therefore represent an attractive target in the search for inhibitors working at the DNA-IN, IN-IN and IN-LEDGF interfaces.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0004081</identifier><identifier>PMID: 19119323</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Amino acids ; Binding ; Biochemistry, Molecular Biology ; Biochemistry/Drug Discovery ; Biochemistry/Experimental Biophysical Methods ; Biochemistry/Protein Chemistry ; Biochemistry/Protein Folding ; Biophysics/Biomacromolecule-Ligand Interactions ; Biophysics/Protein Folding ; Catalysis ; Computational Biology/Macromolecular Structure Analysis ; Crystal structure ; Deoxyribonucleic acid ; Dissociation ; DNA ; DNA, Viral - metabolism ; E coli ; Enzymes ; Escherichia coli ; Genomes ; Helices ; Helix-Turn-Helix Motifs ; HIV ; HIV Integrase - chemistry ; HIV Integrase - genetics ; HIV Integrase - metabolism ; HIV-1 - enzymology ; Human immunodeficiency virus ; Human immunodeficiency virus 1 ; Humans ; Integrase ; Intercellular Signaling Peptides and Proteins - metabolism ; Interfaces ; Life Sciences ; Ligands ; Long terminal repeat ; Models, Molecular ; Molecular Sequence Data ; Oligonucleotides - chemistry ; Oligonucleotides - genetics ; Oligonucleotides - metabolism ; Peptides ; Peptides - chemistry ; Peptides - genetics ; Peptides - metabolism ; Protein Binding ; Protein structure ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins ; Structure-function relationships ; Viruses</subject><ispartof>PloS one, 2009, Vol.4 (1), p.e4081-e4081</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>2009 Merad et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Merad et al. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c657t-a7f60e96211d6d48a97fa38e487c7d26e8b52bc641a92f4b94c54a90b961f4013</citedby><cites>FETCH-LOGICAL-c657t-a7f60e96211d6d48a97fa38e487c7d26e8b52bc641a92f4b94c54a90b961f4013</cites><orcidid>0000-0002-3922-5317 ; 0000-0001-9836-6876 ; 0000-0003-0025-0475 ; 0000-0002-0697-2535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1289490250/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1289490250?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,25731,27900,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19119323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00349896$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Buckle, Ashley M.</contributor><creatorcontrib>Merad, Hayate</creatorcontrib><creatorcontrib>Porumb, Horea</creatorcontrib><creatorcontrib>Zargarian, Loussiné</creatorcontrib><creatorcontrib>René, Brigitte</creatorcontrib><creatorcontrib>Hobaika, Zeina</creatorcontrib><creatorcontrib>Maroun, Richard G</creatorcontrib><creatorcontrib>Mauffret, Olivier</creatorcontrib><creatorcontrib>Fermandjian, Serge</creatorcontrib><title>An unusual helix turn helix motif in the catalytic core of HIV-1 integrase binds viral DNA and LEDGF</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Integrase (IN) of the type 1 human immunodeficiency virus (HIV-1) catalyzes the integration of viral DNA into host cellular DNA. We identified a bi-helix motif (residues 149-186) in the crystal structure of the catalytic core (CC) of the IN-Phe185Lys variant that consists of the alpha(4) and alpha(5) helices connected by a 3 to 5-residue turn. The motif is embedded in a large array of interactions that stabilize the monomer and the dimer.
We describe the conformational and binding properties of the corresponding synthetic peptide. This displays features of the protein motif structure thanks to the mutual intramolecular interactions of the alpha(4) and alpha(5) helices that maintain the fold. The main properties are the binding to: 1- the processing-attachment site at the LTR (long terminal repeat) ends of virus DNA with a K(d) (dissociation constant) in the sub-micromolar range; 2- the whole IN enzyme; and 3- the IN binding domain (IBD) but not the IBD-Asp366Asn variant of LEDGF (lens epidermal derived growth factor) lacking the essential Asp366 residue. In our motif, in contrast to the conventional HTH (helix-turn-helix), it is the N terminal helix (alpha(4)) which has the role of DNA recognition helix, while the C terminal helix (alpha(5)) would rather contribute to the motif stabilization by interactions with the alpha(4) helix.
The motif, termed HTHi (i, for inverted) emerges as a central piece of the IN structure and function. It could therefore represent an attractive target in the search for inhibitors working at the DNA-IN, IN-IN and IN-LEDGF interfaces.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Binding</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biochemistry/Drug Discovery</subject><subject>Biochemistry/Experimental Biophysical Methods</subject><subject>Biochemistry/Protein Chemistry</subject><subject>Biochemistry/Protein Folding</subject><subject>Biophysics/Biomacromolecule-Ligand Interactions</subject><subject>Biophysics/Protein Folding</subject><subject>Catalysis</subject><subject>Computational Biology/Macromolecular Structure Analysis</subject><subject>Crystal structure</subject><subject>Deoxyribonucleic acid</subject><subject>Dissociation</subject><subject>DNA</subject><subject>DNA, Viral - metabolism</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Genomes</subject><subject>Helices</subject><subject>Helix-Turn-Helix Motifs</subject><subject>HIV</subject><subject>HIV Integrase - chemistry</subject><subject>HIV Integrase - genetics</subject><subject>HIV Integrase - metabolism</subject><subject>HIV-1 - enzymology</subject><subject>Human immunodeficiency virus</subject><subject>Human immunodeficiency virus 1</subject><subject>Humans</subject><subject>Integrase</subject><subject>Intercellular Signaling Peptides and Proteins - metabolism</subject><subject>Interfaces</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Long terminal repeat</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Oligonucleotides - chemistry</subject><subject>Oligonucleotides - genetics</subject><subject>Oligonucleotides - metabolism</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Peptides - genetics</subject><subject>Peptides - metabolism</subject><subject>Protein Binding</subject><subject>Protein structure</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Structure-function relationships</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11r2zAUhs3YWLtu_2BsgkGhF8mOPiJbN4PQrwTCCvvorZBlOVFxpMySQ_vvJzfelpTBhi8sznnOe_Qe-2TZWwxjTHP88c53rVPNeOOdGQMAgwI_y46xoGTECdDne-ej7FUIdwATWnD-MjvCAvc5epxVU4c614VONWhlGnuPYpIdjmsfbY2sQ3FlkFZRNQ_RaqR9a5Cv0Wx-O8IpHc2yVcGg0roqoK1tk9bF5ylSrkKLy4vrq9fZi1o1wbwZ3ifZ96vLb-ez0eLmen4-XYw0n-RxpPKagxGcYFzxihVK5LWihWFFrvOKcFOUE1JqzrASpGalYHrClIBScFwzwPQke7_T3TQ-yGFAQWJSCCaATCAR8x1ReXUnN61dq_ZBemXlY8C3S6na5LExkqmCcCCKceDMQFWquqQUqkIDNgpI0vo0dOvKtam0cTE5PxA9zDi7kku_lUk2B9Jf5mwnsHpSNpsuZB8DoEwUgm97a6dDs9b_6EyIcm2DNk2jnPFdkJznBScU_gmmvsCFyBP44Qn494GNd9RSpZlYV_tkRaenMmur069X2xSfspwywsmj7NlBQWKiuY9L1YUg51-__D97c3vInu6xK6OauAq-6aL1LhyCbAfq1ofQmvr3aDHIfnN--ZT95shhc1LZu_2v-adoWBX6E563EJI</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Merad, Hayate</creator><creator>Porumb, Horea</creator><creator>Zargarian, Loussiné</creator><creator>René, Brigitte</creator><creator>Hobaika, Zeina</creator><creator>Maroun, Richard G</creator><creator>Mauffret, Olivier</creator><creator>Fermandjian, Serge</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3922-5317</orcidid><orcidid>https://orcid.org/0000-0001-9836-6876</orcidid><orcidid>https://orcid.org/0000-0003-0025-0475</orcidid><orcidid>https://orcid.org/0000-0002-0697-2535</orcidid></search><sort><creationdate>2009</creationdate><title>An unusual helix turn helix motif in the catalytic core of HIV-1 integrase binds viral DNA and LEDGF</title><author>Merad, Hayate ; Porumb, Horea ; Zargarian, Loussiné ; René, Brigitte ; Hobaika, Zeina ; Maroun, Richard G ; Mauffret, Olivier ; Fermandjian, Serge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c657t-a7f60e96211d6d48a97fa38e487c7d26e8b52bc641a92f4b94c54a90b961f4013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Binding</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biochemistry/Drug Discovery</topic><topic>Biochemistry/Experimental Biophysical Methods</topic><topic>Biochemistry/Protein Chemistry</topic><topic>Biochemistry/Protein Folding</topic><topic>Biophysics/Biomacromolecule-Ligand Interactions</topic><topic>Biophysics/Protein Folding</topic><topic>Catalysis</topic><topic>Computational Biology/Macromolecular Structure Analysis</topic><topic>Crystal structure</topic><topic>Deoxyribonucleic acid</topic><topic>Dissociation</topic><topic>DNA</topic><topic>DNA, Viral - metabolism</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Genomes</topic><topic>Helices</topic><topic>Helix-Turn-Helix Motifs</topic><topic>HIV</topic><topic>HIV Integrase - chemistry</topic><topic>HIV Integrase - genetics</topic><topic>HIV Integrase - metabolism</topic><topic>HIV-1 - enzymology</topic><topic>Human immunodeficiency virus</topic><topic>Human immunodeficiency virus 1</topic><topic>Humans</topic><topic>Integrase</topic><topic>Intercellular Signaling Peptides and Proteins - metabolism</topic><topic>Interfaces</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Long terminal repeat</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Oligonucleotides - chemistry</topic><topic>Oligonucleotides - genetics</topic><topic>Oligonucleotides - metabolism</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Peptides - genetics</topic><topic>Peptides - metabolism</topic><topic>Protein Binding</topic><topic>Protein structure</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Structure-function relationships</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merad, Hayate</creatorcontrib><creatorcontrib>Porumb, Horea</creatorcontrib><creatorcontrib>Zargarian, Loussiné</creatorcontrib><creatorcontrib>René, Brigitte</creatorcontrib><creatorcontrib>Hobaika, Zeina</creatorcontrib><creatorcontrib>Maroun, Richard G</creatorcontrib><creatorcontrib>Mauffret, Olivier</creatorcontrib><creatorcontrib>Fermandjian, Serge</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merad, Hayate</au><au>Porumb, Horea</au><au>Zargarian, Loussiné</au><au>René, Brigitte</au><au>Hobaika, Zeina</au><au>Maroun, Richard G</au><au>Mauffret, Olivier</au><au>Fermandjian, Serge</au><au>Buckle, Ashley M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An unusual helix turn helix motif in the catalytic core of HIV-1 integrase binds viral DNA and LEDGF</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2009</date><risdate>2009</risdate><volume>4</volume><issue>1</issue><spage>e4081</spage><epage>e4081</epage><pages>e4081-e4081</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Integrase (IN) of the type 1 human immunodeficiency virus (HIV-1) catalyzes the integration of viral DNA into host cellular DNA. We identified a bi-helix motif (residues 149-186) in the crystal structure of the catalytic core (CC) of the IN-Phe185Lys variant that consists of the alpha(4) and alpha(5) helices connected by a 3 to 5-residue turn. The motif is embedded in a large array of interactions that stabilize the monomer and the dimer.
We describe the conformational and binding properties of the corresponding synthetic peptide. This displays features of the protein motif structure thanks to the mutual intramolecular interactions of the alpha(4) and alpha(5) helices that maintain the fold. The main properties are the binding to: 1- the processing-attachment site at the LTR (long terminal repeat) ends of virus DNA with a K(d) (dissociation constant) in the sub-micromolar range; 2- the whole IN enzyme; and 3- the IN binding domain (IBD) but not the IBD-Asp366Asn variant of LEDGF (lens epidermal derived growth factor) lacking the essential Asp366 residue. In our motif, in contrast to the conventional HTH (helix-turn-helix), it is the N terminal helix (alpha(4)) which has the role of DNA recognition helix, while the C terminal helix (alpha(5)) would rather contribute to the motif stabilization by interactions with the alpha(4) helix.
The motif, termed HTHi (i, for inverted) emerges as a central piece of the IN structure and function. It could therefore represent an attractive target in the search for inhibitors working at the DNA-IN, IN-IN and IN-LEDGF interfaces.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19119323</pmid><doi>10.1371/journal.pone.0004081</doi><tpages>e4081</tpages><orcidid>https://orcid.org/0000-0002-3922-5317</orcidid><orcidid>https://orcid.org/0000-0001-9836-6876</orcidid><orcidid>https://orcid.org/0000-0003-0025-0475</orcidid><orcidid>https://orcid.org/0000-0002-0697-2535</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2009, Vol.4 (1), p.e4081-e4081 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1289490250 |
source | Publicly Available Content Database; PubMed Central |
subjects | Amino Acid Sequence Amino acids Binding Biochemistry, Molecular Biology Biochemistry/Drug Discovery Biochemistry/Experimental Biophysical Methods Biochemistry/Protein Chemistry Biochemistry/Protein Folding Biophysics/Biomacromolecule-Ligand Interactions Biophysics/Protein Folding Catalysis Computational Biology/Macromolecular Structure Analysis Crystal structure Deoxyribonucleic acid Dissociation DNA DNA, Viral - metabolism E coli Enzymes Escherichia coli Genomes Helices Helix-Turn-Helix Motifs HIV HIV Integrase - chemistry HIV Integrase - genetics HIV Integrase - metabolism HIV-1 - enzymology Human immunodeficiency virus Human immunodeficiency virus 1 Humans Integrase Intercellular Signaling Peptides and Proteins - metabolism Interfaces Life Sciences Ligands Long terminal repeat Models, Molecular Molecular Sequence Data Oligonucleotides - chemistry Oligonucleotides - genetics Oligonucleotides - metabolism Peptides Peptides - chemistry Peptides - genetics Peptides - metabolism Protein Binding Protein structure Protein Structure, Secondary Protein Structure, Tertiary Proteins Structure-function relationships Viruses |
title | An unusual helix turn helix motif in the catalytic core of HIV-1 integrase binds viral DNA and LEDGF |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A02%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20unusual%20helix%20turn%20helix%20motif%20in%20the%20catalytic%20core%20of%20HIV-1%20integrase%20binds%20viral%20DNA%20and%20LEDGF&rft.jtitle=PloS%20one&rft.au=Merad,%20Hayate&rft.date=2009&rft.volume=4&rft.issue=1&rft.spage=e4081&rft.epage=e4081&rft.pages=e4081-e4081&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0004081&rft_dat=%3Cgale_plos_%3EA473426297%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c657t-a7f60e96211d6d48a97fa38e487c7d26e8b52bc641a92f4b94c54a90b961f4013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1289490250&rft_id=info:pmid/19119323&rft_galeid=A473426297&rfr_iscdi=true |