Loading…

Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse

Rapid expansion of available data, both phenotypic and genotypic, for multiple strains of mice has enabled the development of new methods to interrogate the mouse genome for functional genetic perturbations. In silico mapping provides an expedient way to associate the natural diversity of phenotypic...

Full description

Saved in:
Bibliographic Details
Published in:PLoS biology 2004-12, Vol.2 (12), p.e393-e393
Main Authors: Pletcher, Mathew T, McClurg, Philip, Batalov, Serge, Su, Andrew I, Barnes, S Whitney, Lagler, Erica, Korstanje, Ron, Wang, Xiaosong, Nusskern, Deborah, Bogue, Molly A, Mural, Richard J, Paigen, Beverly, Wiltshire, Tim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c554t-e0d33228fc5de88840597f0c4674519c0404f39b89334d7889e400d63913dc13
cites cdi_FETCH-LOGICAL-c554t-e0d33228fc5de88840597f0c4674519c0404f39b89334d7889e400d63913dc13
container_end_page e393
container_issue 12
container_start_page e393
container_title PLoS biology
container_volume 2
creator Pletcher, Mathew T
McClurg, Philip
Batalov, Serge
Su, Andrew I
Barnes, S Whitney
Lagler, Erica
Korstanje, Ron
Wang, Xiaosong
Nusskern, Deborah
Bogue, Molly A
Mural, Richard J
Paigen, Beverly
Wiltshire, Tim
description Rapid expansion of available data, both phenotypic and genotypic, for multiple strains of mice has enabled the development of new methods to interrogate the mouse genome for functional genetic perturbations. In silico mapping provides an expedient way to associate the natural diversity of phenotypic traits with ancestrally inherited polymorphisms for the purpose of dissecting genetic traits. In mouse, the current single nucleotide polymorphism (SNP) data have lacked the density across the genome and coverage of enough strains to properly achieve this goal. To remedy this, 470,407 allele calls were produced for 10,990 evenly spaced SNP loci across 48 inbred mouse strains. Use of the SNP set with statistical models that considered unique patterns within blocks of three SNPs as an inferred haplotype could successfully map known single gene traits and a cloned quantitative trait gene. Application of this method to high-density lipoprotein and gallstone phenotypes reproduced previously characterized quantitative trait loci (QTL). The inferred haplotype data also facilitates the refinement of QTL regions such that candidate genes can be more easily identified and characterized as shown for adenylate cyclase 7.
doi_str_mv 10.1371/journal.pbio.0020393
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1291079093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_efef8b3614124792a4afbd6699289005</doaj_id><sourcerecordid>17641069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-e0d33228fc5de88840597f0c4674519c0404f39b89334d7889e400d63913dc13</originalsourceid><addsrcrecordid>eNqFUkuLFDEYDKK46-g_EG0QvM2YdzoHD7L4WFjwMp5DOo-ZDOlOm3Qv7L837bS6K4KnfHypqqSKAuAlgjtEBHp3SnMedNyNXUg7CDEkkjwCl4hRthVtyx7fmy_As1JOFYQlbp-CC8QYoVySS7D_VlyTfKMb64Y6ljAcomuG2USXpmBdM6Z416c8HkPpm16PjU-5CUNFxmDSshkrZ9lMR9f0aS7uOXjidSzuxXpuwP7Tx_3Vl-3N18_XVx9utoYxOm0dtIRg3HrDrGvblkImhYeGckEZkgZSSD2RXSsJobb6kI5CaDmRiFiDyAa8PsuOMRW15lEUwhJBIWFlbcD1GWGTPqkxh17nO5V0UD8XKR-UzlOoXpXzzrcd4YgiTIXEmmrfWc5lTUxCyKrW-_W1ueudNW6Yso4PRB_eDOGoDulWMcyRkJX_duXn9H12ZVJ9KMbFqAdXQ1NcIEGxgP8FIsEpgnxRfPMX8N8Z0DPK5FRKdv73lxFUS5N-sdTSJLU2qdJe3bf7h7RWh_wAOTHFWg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1291079093</pqid></control><display><type>article</type><title>Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Pletcher, Mathew T ; McClurg, Philip ; Batalov, Serge ; Su, Andrew I ; Barnes, S Whitney ; Lagler, Erica ; Korstanje, Ron ; Wang, Xiaosong ; Nusskern, Deborah ; Bogue, Molly A ; Mural, Richard J ; Paigen, Beverly ; Wiltshire, Tim</creator><contributor>Wayne Frankel</contributor><creatorcontrib>Pletcher, Mathew T ; McClurg, Philip ; Batalov, Serge ; Su, Andrew I ; Barnes, S Whitney ; Lagler, Erica ; Korstanje, Ron ; Wang, Xiaosong ; Nusskern, Deborah ; Bogue, Molly A ; Mural, Richard J ; Paigen, Beverly ; Wiltshire, Tim ; Wayne Frankel</creatorcontrib><description>Rapid expansion of available data, both phenotypic and genotypic, for multiple strains of mice has enabled the development of new methods to interrogate the mouse genome for functional genetic perturbations. In silico mapping provides an expedient way to associate the natural diversity of phenotypic traits with ancestrally inherited polymorphisms for the purpose of dissecting genetic traits. In mouse, the current single nucleotide polymorphism (SNP) data have lacked the density across the genome and coverage of enough strains to properly achieve this goal. To remedy this, 470,407 allele calls were produced for 10,990 evenly spaced SNP loci across 48 inbred mouse strains. Use of the SNP set with statistical models that considered unique patterns within blocks of three SNPs as an inferred haplotype could successfully map known single gene traits and a cloned quantitative trait gene. Application of this method to high-density lipoprotein and gallstone phenotypes reproduced previously characterized quantitative trait loci (QTL). The inferred haplotype data also facilitates the refinement of QTL regions such that candidate genes can be more easily identified and characterized as shown for adenylate cyclase 7.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.0020393</identifier><identifier>PMID: 15534693</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenylyl Cyclases - genetics ; Alleles ; Animals ; Bioinformatics/Computational Biology ; Chromosome Mapping ; Colleges &amp; universities ; Computational Biology - methods ; Confidence intervals ; Crosses, Genetic ; Gallstones - metabolism ; Genetics ; Genetics/Genomics/Gene Therapy ; Genome ; Genomes ; Genomics ; Genotype &amp; phenotype ; Haplotypes ; Linkage Disequilibrium ; Lipoproteins, HDL - metabolism ; Logistic Models ; Mice ; Mice, Inbred C57BL ; Mice, Inbred DBA ; Mice, Inbred Strains ; Models, Genetic ; Models, Statistical ; Mus (Mouse) ; Phenotype ; Phylogeny ; Polymorphism ; Polymorphism, Single Nucleotide ; Quantitative Trait Loci ; Rodents ; Species Specificity ; Statistical methods</subject><ispartof>PLoS biology, 2004-12, Vol.2 (12), p.e393-e393</ispartof><rights>2004 Pletcher et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Citation: Pletcher MT, McClurg P, Batalov S, Su AI, Barnes SW, et al. (2004) Use of a Dense Single Nucleotide Polymorphism Map for In Silico Mapping in the Mouse. PLoS Biol 2(12): e393. doi:10.1371/journal.pbio.0020393</rights><rights>Copyright: © 2004 Pletcher et al. 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-e0d33228fc5de88840597f0c4674519c0404f39b89334d7889e400d63913dc13</citedby><cites>FETCH-LOGICAL-c554t-e0d33228fc5de88840597f0c4674519c0404f39b89334d7889e400d63913dc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1291079093/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1291079093?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15534693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wayne Frankel</contributor><creatorcontrib>Pletcher, Mathew T</creatorcontrib><creatorcontrib>McClurg, Philip</creatorcontrib><creatorcontrib>Batalov, Serge</creatorcontrib><creatorcontrib>Su, Andrew I</creatorcontrib><creatorcontrib>Barnes, S Whitney</creatorcontrib><creatorcontrib>Lagler, Erica</creatorcontrib><creatorcontrib>Korstanje, Ron</creatorcontrib><creatorcontrib>Wang, Xiaosong</creatorcontrib><creatorcontrib>Nusskern, Deborah</creatorcontrib><creatorcontrib>Bogue, Molly A</creatorcontrib><creatorcontrib>Mural, Richard J</creatorcontrib><creatorcontrib>Paigen, Beverly</creatorcontrib><creatorcontrib>Wiltshire, Tim</creatorcontrib><title>Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Rapid expansion of available data, both phenotypic and genotypic, for multiple strains of mice has enabled the development of new methods to interrogate the mouse genome for functional genetic perturbations. In silico mapping provides an expedient way to associate the natural diversity of phenotypic traits with ancestrally inherited polymorphisms for the purpose of dissecting genetic traits. In mouse, the current single nucleotide polymorphism (SNP) data have lacked the density across the genome and coverage of enough strains to properly achieve this goal. To remedy this, 470,407 allele calls were produced for 10,990 evenly spaced SNP loci across 48 inbred mouse strains. Use of the SNP set with statistical models that considered unique patterns within blocks of three SNPs as an inferred haplotype could successfully map known single gene traits and a cloned quantitative trait gene. Application of this method to high-density lipoprotein and gallstone phenotypes reproduced previously characterized quantitative trait loci (QTL). The inferred haplotype data also facilitates the refinement of QTL regions such that candidate genes can be more easily identified and characterized as shown for adenylate cyclase 7.</description><subject>Adenylyl Cyclases - genetics</subject><subject>Alleles</subject><subject>Animals</subject><subject>Bioinformatics/Computational Biology</subject><subject>Chromosome Mapping</subject><subject>Colleges &amp; universities</subject><subject>Computational Biology - methods</subject><subject>Confidence intervals</subject><subject>Crosses, Genetic</subject><subject>Gallstones - metabolism</subject><subject>Genetics</subject><subject>Genetics/Genomics/Gene Therapy</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype &amp; phenotype</subject><subject>Haplotypes</subject><subject>Linkage Disequilibrium</subject><subject>Lipoproteins, HDL - metabolism</subject><subject>Logistic Models</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Inbred DBA</subject><subject>Mice, Inbred Strains</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>Mus (Mouse)</subject><subject>Phenotype</subject><subject>Phylogeny</subject><subject>Polymorphism</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Quantitative Trait Loci</subject><subject>Rodents</subject><subject>Species Specificity</subject><subject>Statistical methods</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFUkuLFDEYDKK46-g_EG0QvM2YdzoHD7L4WFjwMp5DOo-ZDOlOm3Qv7L837bS6K4KnfHypqqSKAuAlgjtEBHp3SnMedNyNXUg7CDEkkjwCl4hRthVtyx7fmy_As1JOFYQlbp-CC8QYoVySS7D_VlyTfKMb64Y6ljAcomuG2USXpmBdM6Z416c8HkPpm16PjU-5CUNFxmDSshkrZ9lMR9f0aS7uOXjidSzuxXpuwP7Tx_3Vl-3N18_XVx9utoYxOm0dtIRg3HrDrGvblkImhYeGckEZkgZSSD2RXSsJobb6kI5CaDmRiFiDyAa8PsuOMRW15lEUwhJBIWFlbcD1GWGTPqkxh17nO5V0UD8XKR-UzlOoXpXzzrcd4YgiTIXEmmrfWc5lTUxCyKrW-_W1ueudNW6Yso4PRB_eDOGoDulWMcyRkJX_duXn9H12ZVJ9KMbFqAdXQ1NcIEGxgP8FIsEpgnxRfPMX8N8Z0DPK5FRKdv73lxFUS5N-sdTSJLU2qdJe3bf7h7RWh_wAOTHFWg</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Pletcher, Mathew T</creator><creator>McClurg, Philip</creator><creator>Batalov, Serge</creator><creator>Su, Andrew I</creator><creator>Barnes, S Whitney</creator><creator>Lagler, Erica</creator><creator>Korstanje, Ron</creator><creator>Wang, Xiaosong</creator><creator>Nusskern, Deborah</creator><creator>Bogue, Molly A</creator><creator>Mural, Richard J</creator><creator>Paigen, Beverly</creator><creator>Wiltshire, Tim</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20041201</creationdate><title>Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse</title><author>Pletcher, Mathew T ; McClurg, Philip ; Batalov, Serge ; Su, Andrew I ; Barnes, S Whitney ; Lagler, Erica ; Korstanje, Ron ; Wang, Xiaosong ; Nusskern, Deborah ; Bogue, Molly A ; Mural, Richard J ; Paigen, Beverly ; Wiltshire, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-e0d33228fc5de88840597f0c4674519c0404f39b89334d7889e400d63913dc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adenylyl Cyclases - genetics</topic><topic>Alleles</topic><topic>Animals</topic><topic>Bioinformatics/Computational Biology</topic><topic>Chromosome Mapping</topic><topic>Colleges &amp; universities</topic><topic>Computational Biology - methods</topic><topic>Confidence intervals</topic><topic>Crosses, Genetic</topic><topic>Gallstones - metabolism</topic><topic>Genetics</topic><topic>Genetics/Genomics/Gene Therapy</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype &amp; phenotype</topic><topic>Haplotypes</topic><topic>Linkage Disequilibrium</topic><topic>Lipoproteins, HDL - metabolism</topic><topic>Logistic Models</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Inbred DBA</topic><topic>Mice, Inbred Strains</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>Mus (Mouse)</topic><topic>Phenotype</topic><topic>Phylogeny</topic><topic>Polymorphism</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Quantitative Trait Loci</topic><topic>Rodents</topic><topic>Species Specificity</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pletcher, Mathew T</creatorcontrib><creatorcontrib>McClurg, Philip</creatorcontrib><creatorcontrib>Batalov, Serge</creatorcontrib><creatorcontrib>Su, Andrew I</creatorcontrib><creatorcontrib>Barnes, S Whitney</creatorcontrib><creatorcontrib>Lagler, Erica</creatorcontrib><creatorcontrib>Korstanje, Ron</creatorcontrib><creatorcontrib>Wang, Xiaosong</creatorcontrib><creatorcontrib>Nusskern, Deborah</creatorcontrib><creatorcontrib>Bogue, Molly A</creatorcontrib><creatorcontrib>Mural, Richard J</creatorcontrib><creatorcontrib>Paigen, Beverly</creatorcontrib><creatorcontrib>Wiltshire, Tim</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pletcher, Mathew T</au><au>McClurg, Philip</au><au>Batalov, Serge</au><au>Su, Andrew I</au><au>Barnes, S Whitney</au><au>Lagler, Erica</au><au>Korstanje, Ron</au><au>Wang, Xiaosong</au><au>Nusskern, Deborah</au><au>Bogue, Molly A</au><au>Mural, Richard J</au><au>Paigen, Beverly</au><au>Wiltshire, Tim</au><au>Wayne Frankel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>2</volume><issue>12</issue><spage>e393</spage><epage>e393</epage><pages>e393-e393</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Rapid expansion of available data, both phenotypic and genotypic, for multiple strains of mice has enabled the development of new methods to interrogate the mouse genome for functional genetic perturbations. In silico mapping provides an expedient way to associate the natural diversity of phenotypic traits with ancestrally inherited polymorphisms for the purpose of dissecting genetic traits. In mouse, the current single nucleotide polymorphism (SNP) data have lacked the density across the genome and coverage of enough strains to properly achieve this goal. To remedy this, 470,407 allele calls were produced for 10,990 evenly spaced SNP loci across 48 inbred mouse strains. Use of the SNP set with statistical models that considered unique patterns within blocks of three SNPs as an inferred haplotype could successfully map known single gene traits and a cloned quantitative trait gene. Application of this method to high-density lipoprotein and gallstone phenotypes reproduced previously characterized quantitative trait loci (QTL). The inferred haplotype data also facilitates the refinement of QTL regions such that candidate genes can be more easily identified and characterized as shown for adenylate cyclase 7.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>15534693</pmid><doi>10.1371/journal.pbio.0020393</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2004-12, Vol.2 (12), p.e393-e393
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_1291079093
source PubMed (Medline); Publicly Available Content Database
subjects Adenylyl Cyclases - genetics
Alleles
Animals
Bioinformatics/Computational Biology
Chromosome Mapping
Colleges & universities
Computational Biology - methods
Confidence intervals
Crosses, Genetic
Gallstones - metabolism
Genetics
Genetics/Genomics/Gene Therapy
Genome
Genomes
Genomics
Genotype & phenotype
Haplotypes
Linkage Disequilibrium
Lipoproteins, HDL - metabolism
Logistic Models
Mice
Mice, Inbred C57BL
Mice, Inbred DBA
Mice, Inbred Strains
Models, Genetic
Models, Statistical
Mus (Mouse)
Phenotype
Phylogeny
Polymorphism
Polymorphism, Single Nucleotide
Quantitative Trait Loci
Rodents
Species Specificity
Statistical methods
title Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A17%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20a%20dense%20single%20nucleotide%20polymorphism%20map%20for%20in%20silico%20mapping%20in%20the%20mouse&rft.jtitle=PLoS%20biology&rft.au=Pletcher,%20Mathew%20T&rft.date=2004-12-01&rft.volume=2&rft.issue=12&rft.spage=e393&rft.epage=e393&rft.pages=e393-e393&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.0020393&rft_dat=%3Cproquest_plos_%3E17641069%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c554t-e0d33228fc5de88840597f0c4674519c0404f39b89334d7889e400d63913dc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1291079093&rft_id=info:pmid/15534693&rfr_iscdi=true