Loading…
Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse
Rapid expansion of available data, both phenotypic and genotypic, for multiple strains of mice has enabled the development of new methods to interrogate the mouse genome for functional genetic perturbations. In silico mapping provides an expedient way to associate the natural diversity of phenotypic...
Saved in:
Published in: | PLoS biology 2004-12, Vol.2 (12), p.e393-e393 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c554t-e0d33228fc5de88840597f0c4674519c0404f39b89334d7889e400d63913dc13 |
---|---|
cites | cdi_FETCH-LOGICAL-c554t-e0d33228fc5de88840597f0c4674519c0404f39b89334d7889e400d63913dc13 |
container_end_page | e393 |
container_issue | 12 |
container_start_page | e393 |
container_title | PLoS biology |
container_volume | 2 |
creator | Pletcher, Mathew T McClurg, Philip Batalov, Serge Su, Andrew I Barnes, S Whitney Lagler, Erica Korstanje, Ron Wang, Xiaosong Nusskern, Deborah Bogue, Molly A Mural, Richard J Paigen, Beverly Wiltshire, Tim |
description | Rapid expansion of available data, both phenotypic and genotypic, for multiple strains of mice has enabled the development of new methods to interrogate the mouse genome for functional genetic perturbations. In silico mapping provides an expedient way to associate the natural diversity of phenotypic traits with ancestrally inherited polymorphisms for the purpose of dissecting genetic traits. In mouse, the current single nucleotide polymorphism (SNP) data have lacked the density across the genome and coverage of enough strains to properly achieve this goal. To remedy this, 470,407 allele calls were produced for 10,990 evenly spaced SNP loci across 48 inbred mouse strains. Use of the SNP set with statistical models that considered unique patterns within blocks of three SNPs as an inferred haplotype could successfully map known single gene traits and a cloned quantitative trait gene. Application of this method to high-density lipoprotein and gallstone phenotypes reproduced previously characterized quantitative trait loci (QTL). The inferred haplotype data also facilitates the refinement of QTL regions such that candidate genes can be more easily identified and characterized as shown for adenylate cyclase 7. |
doi_str_mv | 10.1371/journal.pbio.0020393 |
format | article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1291079093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_efef8b3614124792a4afbd6699289005</doaj_id><sourcerecordid>17641069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-e0d33228fc5de88840597f0c4674519c0404f39b89334d7889e400d63913dc13</originalsourceid><addsrcrecordid>eNqFUkuLFDEYDKK46-g_EG0QvM2YdzoHD7L4WFjwMp5DOo-ZDOlOm3Qv7L837bS6K4KnfHypqqSKAuAlgjtEBHp3SnMedNyNXUg7CDEkkjwCl4hRthVtyx7fmy_As1JOFYQlbp-CC8QYoVySS7D_VlyTfKMb64Y6ljAcomuG2USXpmBdM6Z416c8HkPpm16PjU-5CUNFxmDSshkrZ9lMR9f0aS7uOXjidSzuxXpuwP7Tx_3Vl-3N18_XVx9utoYxOm0dtIRg3HrDrGvblkImhYeGckEZkgZSSD2RXSsJobb6kI5CaDmRiFiDyAa8PsuOMRW15lEUwhJBIWFlbcD1GWGTPqkxh17nO5V0UD8XKR-UzlOoXpXzzrcd4YgiTIXEmmrfWc5lTUxCyKrW-_W1ueudNW6Yso4PRB_eDOGoDulWMcyRkJX_duXn9H12ZVJ9KMbFqAdXQ1NcIEGxgP8FIsEpgnxRfPMX8N8Z0DPK5FRKdv73lxFUS5N-sdTSJLU2qdJe3bf7h7RWh_wAOTHFWg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1291079093</pqid></control><display><type>article</type><title>Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Pletcher, Mathew T ; McClurg, Philip ; Batalov, Serge ; Su, Andrew I ; Barnes, S Whitney ; Lagler, Erica ; Korstanje, Ron ; Wang, Xiaosong ; Nusskern, Deborah ; Bogue, Molly A ; Mural, Richard J ; Paigen, Beverly ; Wiltshire, Tim</creator><contributor>Wayne Frankel</contributor><creatorcontrib>Pletcher, Mathew T ; McClurg, Philip ; Batalov, Serge ; Su, Andrew I ; Barnes, S Whitney ; Lagler, Erica ; Korstanje, Ron ; Wang, Xiaosong ; Nusskern, Deborah ; Bogue, Molly A ; Mural, Richard J ; Paigen, Beverly ; Wiltshire, Tim ; Wayne Frankel</creatorcontrib><description>Rapid expansion of available data, both phenotypic and genotypic, for multiple strains of mice has enabled the development of new methods to interrogate the mouse genome for functional genetic perturbations. In silico mapping provides an expedient way to associate the natural diversity of phenotypic traits with ancestrally inherited polymorphisms for the purpose of dissecting genetic traits. In mouse, the current single nucleotide polymorphism (SNP) data have lacked the density across the genome and coverage of enough strains to properly achieve this goal. To remedy this, 470,407 allele calls were produced for 10,990 evenly spaced SNP loci across 48 inbred mouse strains. Use of the SNP set with statistical models that considered unique patterns within blocks of three SNPs as an inferred haplotype could successfully map known single gene traits and a cloned quantitative trait gene. Application of this method to high-density lipoprotein and gallstone phenotypes reproduced previously characterized quantitative trait loci (QTL). The inferred haplotype data also facilitates the refinement of QTL regions such that candidate genes can be more easily identified and characterized as shown for adenylate cyclase 7.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.0020393</identifier><identifier>PMID: 15534693</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenylyl Cyclases - genetics ; Alleles ; Animals ; Bioinformatics/Computational Biology ; Chromosome Mapping ; Colleges & universities ; Computational Biology - methods ; Confidence intervals ; Crosses, Genetic ; Gallstones - metabolism ; Genetics ; Genetics/Genomics/Gene Therapy ; Genome ; Genomes ; Genomics ; Genotype & phenotype ; Haplotypes ; Linkage Disequilibrium ; Lipoproteins, HDL - metabolism ; Logistic Models ; Mice ; Mice, Inbred C57BL ; Mice, Inbred DBA ; Mice, Inbred Strains ; Models, Genetic ; Models, Statistical ; Mus (Mouse) ; Phenotype ; Phylogeny ; Polymorphism ; Polymorphism, Single Nucleotide ; Quantitative Trait Loci ; Rodents ; Species Specificity ; Statistical methods</subject><ispartof>PLoS biology, 2004-12, Vol.2 (12), p.e393-e393</ispartof><rights>2004 Pletcher et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Citation: Pletcher MT, McClurg P, Batalov S, Su AI, Barnes SW, et al. (2004) Use of a Dense Single Nucleotide Polymorphism Map for In Silico Mapping in the Mouse. PLoS Biol 2(12): e393. doi:10.1371/journal.pbio.0020393</rights><rights>Copyright: © 2004 Pletcher et al. 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-e0d33228fc5de88840597f0c4674519c0404f39b89334d7889e400d63913dc13</citedby><cites>FETCH-LOGICAL-c554t-e0d33228fc5de88840597f0c4674519c0404f39b89334d7889e400d63913dc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1291079093/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1291079093?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15534693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wayne Frankel</contributor><creatorcontrib>Pletcher, Mathew T</creatorcontrib><creatorcontrib>McClurg, Philip</creatorcontrib><creatorcontrib>Batalov, Serge</creatorcontrib><creatorcontrib>Su, Andrew I</creatorcontrib><creatorcontrib>Barnes, S Whitney</creatorcontrib><creatorcontrib>Lagler, Erica</creatorcontrib><creatorcontrib>Korstanje, Ron</creatorcontrib><creatorcontrib>Wang, Xiaosong</creatorcontrib><creatorcontrib>Nusskern, Deborah</creatorcontrib><creatorcontrib>Bogue, Molly A</creatorcontrib><creatorcontrib>Mural, Richard J</creatorcontrib><creatorcontrib>Paigen, Beverly</creatorcontrib><creatorcontrib>Wiltshire, Tim</creatorcontrib><title>Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Rapid expansion of available data, both phenotypic and genotypic, for multiple strains of mice has enabled the development of new methods to interrogate the mouse genome for functional genetic perturbations. In silico mapping provides an expedient way to associate the natural diversity of phenotypic traits with ancestrally inherited polymorphisms for the purpose of dissecting genetic traits. In mouse, the current single nucleotide polymorphism (SNP) data have lacked the density across the genome and coverage of enough strains to properly achieve this goal. To remedy this, 470,407 allele calls were produced for 10,990 evenly spaced SNP loci across 48 inbred mouse strains. Use of the SNP set with statistical models that considered unique patterns within blocks of three SNPs as an inferred haplotype could successfully map known single gene traits and a cloned quantitative trait gene. Application of this method to high-density lipoprotein and gallstone phenotypes reproduced previously characterized quantitative trait loci (QTL). The inferred haplotype data also facilitates the refinement of QTL regions such that candidate genes can be more easily identified and characterized as shown for adenylate cyclase 7.</description><subject>Adenylyl Cyclases - genetics</subject><subject>Alleles</subject><subject>Animals</subject><subject>Bioinformatics/Computational Biology</subject><subject>Chromosome Mapping</subject><subject>Colleges & universities</subject><subject>Computational Biology - methods</subject><subject>Confidence intervals</subject><subject>Crosses, Genetic</subject><subject>Gallstones - metabolism</subject><subject>Genetics</subject><subject>Genetics/Genomics/Gene Therapy</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype & phenotype</subject><subject>Haplotypes</subject><subject>Linkage Disequilibrium</subject><subject>Lipoproteins, HDL - metabolism</subject><subject>Logistic Models</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Inbred DBA</subject><subject>Mice, Inbred Strains</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>Mus (Mouse)</subject><subject>Phenotype</subject><subject>Phylogeny</subject><subject>Polymorphism</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Quantitative Trait Loci</subject><subject>Rodents</subject><subject>Species Specificity</subject><subject>Statistical methods</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFUkuLFDEYDKK46-g_EG0QvM2YdzoHD7L4WFjwMp5DOo-ZDOlOm3Qv7L837bS6K4KnfHypqqSKAuAlgjtEBHp3SnMedNyNXUg7CDEkkjwCl4hRthVtyx7fmy_As1JOFYQlbp-CC8QYoVySS7D_VlyTfKMb64Y6ljAcomuG2USXpmBdM6Z416c8HkPpm16PjU-5CUNFxmDSshkrZ9lMR9f0aS7uOXjidSzuxXpuwP7Tx_3Vl-3N18_XVx9utoYxOm0dtIRg3HrDrGvblkImhYeGckEZkgZSSD2RXSsJobb6kI5CaDmRiFiDyAa8PsuOMRW15lEUwhJBIWFlbcD1GWGTPqkxh17nO5V0UD8XKR-UzlOoXpXzzrcd4YgiTIXEmmrfWc5lTUxCyKrW-_W1ueudNW6Yso4PRB_eDOGoDulWMcyRkJX_duXn9H12ZVJ9KMbFqAdXQ1NcIEGxgP8FIsEpgnxRfPMX8N8Z0DPK5FRKdv73lxFUS5N-sdTSJLU2qdJe3bf7h7RWh_wAOTHFWg</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Pletcher, Mathew T</creator><creator>McClurg, Philip</creator><creator>Batalov, Serge</creator><creator>Su, Andrew I</creator><creator>Barnes, S Whitney</creator><creator>Lagler, Erica</creator><creator>Korstanje, Ron</creator><creator>Wang, Xiaosong</creator><creator>Nusskern, Deborah</creator><creator>Bogue, Molly A</creator><creator>Mural, Richard J</creator><creator>Paigen, Beverly</creator><creator>Wiltshire, Tim</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20041201</creationdate><title>Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse</title><author>Pletcher, Mathew T ; McClurg, Philip ; Batalov, Serge ; Su, Andrew I ; Barnes, S Whitney ; Lagler, Erica ; Korstanje, Ron ; Wang, Xiaosong ; Nusskern, Deborah ; Bogue, Molly A ; Mural, Richard J ; Paigen, Beverly ; Wiltshire, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-e0d33228fc5de88840597f0c4674519c0404f39b89334d7889e400d63913dc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adenylyl Cyclases - genetics</topic><topic>Alleles</topic><topic>Animals</topic><topic>Bioinformatics/Computational Biology</topic><topic>Chromosome Mapping</topic><topic>Colleges & universities</topic><topic>Computational Biology - methods</topic><topic>Confidence intervals</topic><topic>Crosses, Genetic</topic><topic>Gallstones - metabolism</topic><topic>Genetics</topic><topic>Genetics/Genomics/Gene Therapy</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype & phenotype</topic><topic>Haplotypes</topic><topic>Linkage Disequilibrium</topic><topic>Lipoproteins, HDL - metabolism</topic><topic>Logistic Models</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Inbred DBA</topic><topic>Mice, Inbred Strains</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>Mus (Mouse)</topic><topic>Phenotype</topic><topic>Phylogeny</topic><topic>Polymorphism</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Quantitative Trait Loci</topic><topic>Rodents</topic><topic>Species Specificity</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pletcher, Mathew T</creatorcontrib><creatorcontrib>McClurg, Philip</creatorcontrib><creatorcontrib>Batalov, Serge</creatorcontrib><creatorcontrib>Su, Andrew I</creatorcontrib><creatorcontrib>Barnes, S Whitney</creatorcontrib><creatorcontrib>Lagler, Erica</creatorcontrib><creatorcontrib>Korstanje, Ron</creatorcontrib><creatorcontrib>Wang, Xiaosong</creatorcontrib><creatorcontrib>Nusskern, Deborah</creatorcontrib><creatorcontrib>Bogue, Molly A</creatorcontrib><creatorcontrib>Mural, Richard J</creatorcontrib><creatorcontrib>Paigen, Beverly</creatorcontrib><creatorcontrib>Wiltshire, Tim</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pletcher, Mathew T</au><au>McClurg, Philip</au><au>Batalov, Serge</au><au>Su, Andrew I</au><au>Barnes, S Whitney</au><au>Lagler, Erica</au><au>Korstanje, Ron</au><au>Wang, Xiaosong</au><au>Nusskern, Deborah</au><au>Bogue, Molly A</au><au>Mural, Richard J</au><au>Paigen, Beverly</au><au>Wiltshire, Tim</au><au>Wayne Frankel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>2</volume><issue>12</issue><spage>e393</spage><epage>e393</epage><pages>e393-e393</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Rapid expansion of available data, both phenotypic and genotypic, for multiple strains of mice has enabled the development of new methods to interrogate the mouse genome for functional genetic perturbations. In silico mapping provides an expedient way to associate the natural diversity of phenotypic traits with ancestrally inherited polymorphisms for the purpose of dissecting genetic traits. In mouse, the current single nucleotide polymorphism (SNP) data have lacked the density across the genome and coverage of enough strains to properly achieve this goal. To remedy this, 470,407 allele calls were produced for 10,990 evenly spaced SNP loci across 48 inbred mouse strains. Use of the SNP set with statistical models that considered unique patterns within blocks of three SNPs as an inferred haplotype could successfully map known single gene traits and a cloned quantitative trait gene. Application of this method to high-density lipoprotein and gallstone phenotypes reproduced previously characterized quantitative trait loci (QTL). The inferred haplotype data also facilitates the refinement of QTL regions such that candidate genes can be more easily identified and characterized as shown for adenylate cyclase 7.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>15534693</pmid><doi>10.1371/journal.pbio.0020393</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2004-12, Vol.2 (12), p.e393-e393 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_1291079093 |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Adenylyl Cyclases - genetics Alleles Animals Bioinformatics/Computational Biology Chromosome Mapping Colleges & universities Computational Biology - methods Confidence intervals Crosses, Genetic Gallstones - metabolism Genetics Genetics/Genomics/Gene Therapy Genome Genomes Genomics Genotype & phenotype Haplotypes Linkage Disequilibrium Lipoproteins, HDL - metabolism Logistic Models Mice Mice, Inbred C57BL Mice, Inbred DBA Mice, Inbred Strains Models, Genetic Models, Statistical Mus (Mouse) Phenotype Phylogeny Polymorphism Polymorphism, Single Nucleotide Quantitative Trait Loci Rodents Species Specificity Statistical methods |
title | Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A17%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20a%20dense%20single%20nucleotide%20polymorphism%20map%20for%20in%20silico%20mapping%20in%20the%20mouse&rft.jtitle=PLoS%20biology&rft.au=Pletcher,%20Mathew%20T&rft.date=2004-12-01&rft.volume=2&rft.issue=12&rft.spage=e393&rft.epage=e393&rft.pages=e393-e393&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.0020393&rft_dat=%3Cproquest_plos_%3E17641069%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c554t-e0d33228fc5de88840597f0c4674519c0404f39b89334d7889e400d63913dc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1291079093&rft_id=info:pmid/15534693&rfr_iscdi=true |