Loading…
Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium
An ancient cyanobacterial incorporation into a eukaryotic organism led to the evolution of plastids (chloroplasts) and subsequently to the origin of the plant kingdom. The underlying mechanism and the identities of the partners in this monophyletic event remain elusive. To shed light on this evoluti...
Saved in:
Published in: | PloS one 2010-07, Vol.5 (7), p.e11486-e11486 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c787t-82d22e8c04a9c32eff4f8607a705eabe49e8a9316411a6ce449a88a6aa3202343 |
---|---|
cites | cdi_FETCH-LOGICAL-c787t-82d22e8c04a9c32eff4f8607a705eabe49e8a9316411a6ce449a88a6aa3202343 |
container_end_page | e11486 |
container_issue | 7 |
container_start_page | e11486 |
container_title | PloS one |
container_volume | 5 |
creator | Ran, Liang Larsson, John Vigil-Stenman, Theoden Nylander, Johan A A Ininbergs, Karolina Zheng, Wei-Wen Lapidus, Alla Lowry, Stephen Haselkorn, Robert Bergman, Birgitta |
description | An ancient cyanobacterial incorporation into a eukaryotic organism led to the evolution of plastids (chloroplasts) and subsequently to the origin of the plant kingdom. The underlying mechanism and the identities of the partners in this monophyletic event remain elusive.
To shed light on this evolutionary process, we sequenced the genome of a cyanobacterium residing extracellularly in an endosymbiosis with a plant, the water-fern Azolla filiculoides Lam. This symbiosis was selected as it has characters which make it unique among extant cyanobacterial plant symbioses: the cyanobacterium lacks autonomous growth and is vertically transmitted between plant generations. Our results reveal features of evolutionary significance. The genome is in an eroding state, evidenced by a large proportion of pseudogenes (31.2%) and a high frequency of transposable elements (approximately 600) scattered throughout the genome. Pseudogenization is found in genes such as the replication initiator dnaA and DNA repair genes, considered essential to free-living cyanobacteria. For some functional categories of genes pseudogenes are more prevalent than functional genes. Loss of function is apparent even within the 'core' gene categories of bacteria, such as genes involved in glycolysis and nutrient uptake. In contrast, serving as a critical source of nitrogen for the host, genes related to metabolic processes such as cell differentiation and nitrogen-fixation are well preserved.
This is the first finding of genome degradation in a plant symbiont and phenotypically complex cyanobacterium and one of only a few extracellular endosymbionts described showing signs of reductive genome evolution. Our findings suggest an ongoing selective streamlining of this cyanobacterial genome which has resulted in an organism devoted to nitrogen fixation and devoid of autonomous growth. The cyanobacterial symbiont of Azolla can thus be considered at the initial phase of a transition from free-living organism to a nitrogen-fixing plant entity, a transition process which may mimic what drove the evolution of chloroplasts from a cyanobacterial ancestor. |
doi_str_mv | 10.1371/journal.pone.0011486 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1291896463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473887796</galeid><doaj_id>oai_doaj_org_article_2584165b9d594c68941129fa1629e062</doaj_id><sourcerecordid>A473887796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c787t-82d22e8c04a9c32eff4f8607a705eabe49e8a9316411a6ce449a88a6aa3202343</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A9FBQRHcNV-TSW6EpWpdKBT86G3IZs7spmSSdZKp3X9vtrstHSkoc5Ehec57ct7wFsVzjKaY1vjDRRh6r910HTxMEcKYCf6gOMSSkgkniD68839QPInxAqGKCs4fFwcEcSI4RocFnIAPHZTQh2iDL60vdelt6sMS_KS1V9Yvy0vokzXauU2Zeu1jZ1OCpgTfhLjpFjbk07IbXF7AucHpvjQb7cNCmwS9HbqnxaNWuwjP9utR8fPL5x_HXyenZyfz49npxNSiThNBGkJAGMS0NJRA27JWcFTrGlWgF8AkCC0p5gxjzQ0wJrUQmmtNCSKU0aPi5U537UJUe4eiwkRiITnjNBPzHdEEfaHWve10v1FBW3W9Efql0tthHShSCYZ5tZBNJZnhQuauRLYacyIhG5i13u-04m9YD4uR2id7PrtWi4PCuEaiyvjH_eWGRQeNAZ_NdKOq8Ym3K7UMl4pIhAjeTvdqJxBisioam8CsTPAeTMpNKoauLXi779KHXwPEpDobt8-iPYQhqrpiVUVYhf5NUirrbIHM5Ou_yPut3VNLnd2zvg15CrPVVDNWUyHqWvJMTe-h8tdAZ_Mw0Nq8Pyp4NyrITIKrtNRDjGr-_dv_s2fnY_bNHXYF2qVVDG5IOQZxDLIdaHJGYg_t7ZNhpLZRvHFDbaOo9lHMZS_uPvdt0U326B8dBi5a</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1291896463</pqid></control><display><type>article</type><title>Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Ran, Liang ; Larsson, John ; Vigil-Stenman, Theoden ; Nylander, Johan A A ; Ininbergs, Karolina ; Zheng, Wei-Wen ; Lapidus, Alla ; Lowry, Stephen ; Haselkorn, Robert ; Bergman, Birgitta</creator><creatorcontrib>Ran, Liang ; Larsson, John ; Vigil-Stenman, Theoden ; Nylander, Johan A A ; Ininbergs, Karolina ; Zheng, Wei-Wen ; Lapidus, Alla ; Lowry, Stephen ; Haselkorn, Robert ; Bergman, Birgitta ; Joint Genome Institute (JGI)</creatorcontrib><description>An ancient cyanobacterial incorporation into a eukaryotic organism led to the evolution of plastids (chloroplasts) and subsequently to the origin of the plant kingdom. The underlying mechanism and the identities of the partners in this monophyletic event remain elusive.
To shed light on this evolutionary process, we sequenced the genome of a cyanobacterium residing extracellularly in an endosymbiosis with a plant, the water-fern Azolla filiculoides Lam. This symbiosis was selected as it has characters which make it unique among extant cyanobacterial plant symbioses: the cyanobacterium lacks autonomous growth and is vertically transmitted between plant generations. Our results reveal features of evolutionary significance. The genome is in an eroding state, evidenced by a large proportion of pseudogenes (31.2%) and a high frequency of transposable elements (approximately 600) scattered throughout the genome. Pseudogenization is found in genes such as the replication initiator dnaA and DNA repair genes, considered essential to free-living cyanobacteria. For some functional categories of genes pseudogenes are more prevalent than functional genes. Loss of function is apparent even within the 'core' gene categories of bacteria, such as genes involved in glycolysis and nutrient uptake. In contrast, serving as a critical source of nitrogen for the host, genes related to metabolic processes such as cell differentiation and nitrogen-fixation are well preserved.
This is the first finding of genome degradation in a plant symbiont and phenotypically complex cyanobacterium and one of only a few extracellular endosymbionts described showing signs of reductive genome evolution. Our findings suggest an ongoing selective streamlining of this cyanobacterial genome which has resulted in an organism devoted to nitrogen fixation and devoid of autonomous growth. The cyanobacterial symbiont of Azolla can thus be considered at the initial phase of a transition from free-living organism to a nitrogen-fixing plant entity, a transition process which may mimic what drove the evolution of chloroplasts from a cyanobacterial ancestor.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0011486</identifier><identifier>PMID: 20628610</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Azolla ; Azolla filiculoides ; Azolla microphylla ; Bacteria ; Biodegradation ; Bioinformatics ; Biological Evolution ; Cell differentiation ; Chloroplasts ; Core loss ; Cyanobacteria ; Cyanobacteria - genetics ; Cyanobacteria - growth & development ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA repair ; Endosymbionts ; Erosion ; Evolution ; Evolutionary Biology ; Evolutionary Biology/Genomics ; Ferns - microbiology ; Genes ; Genetics and Genomics/Microbial Evolution and Genomics ; Genome, Bacterial - genetics ; Genomes ; Genomics ; Glycolysis ; Identification ; Microbiology/Plant-Biotic Interactions ; Microscopy ; Nitrogen ; Nitrogen fixation ; Nitrogen Fixation - genetics ; Nitrogen Fixation - physiology ; Nostoc azollae ; Nutrient uptake ; Phase transitions ; Photosynthesis ; Phylogenetics ; Plant Biology/Plant-Biotic Interactions ; Plant Physiology ; Plant sciences ; Plastids ; Pseudogenes ; reductive evolution ; Streamlining ; Symbiosis ; Symbiosis - genetics ; Symbiosis - physiology ; Transposons ; växtfysiologi</subject><ispartof>PloS one, 2010-07, Vol.5 (7), p.e11486-e11486</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Ran et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Ran et al. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c787t-82d22e8c04a9c32eff4f8607a705eabe49e8a9316411a6ce449a88a6aa3202343</citedby><cites>FETCH-LOGICAL-c787t-82d22e8c04a9c32eff4f8607a705eabe49e8a9316411a6ce449a88a6aa3202343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1291896463/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1291896463?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25730,27900,27901,36988,36989,44565,53765,53767,75095</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20628610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1154034$$D View this record in Osti.gov$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-117085$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ran, Liang</creatorcontrib><creatorcontrib>Larsson, John</creatorcontrib><creatorcontrib>Vigil-Stenman, Theoden</creatorcontrib><creatorcontrib>Nylander, Johan A A</creatorcontrib><creatorcontrib>Ininbergs, Karolina</creatorcontrib><creatorcontrib>Zheng, Wei-Wen</creatorcontrib><creatorcontrib>Lapidus, Alla</creatorcontrib><creatorcontrib>Lowry, Stephen</creatorcontrib><creatorcontrib>Haselkorn, Robert</creatorcontrib><creatorcontrib>Bergman, Birgitta</creatorcontrib><creatorcontrib>Joint Genome Institute (JGI)</creatorcontrib><title>Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>An ancient cyanobacterial incorporation into a eukaryotic organism led to the evolution of plastids (chloroplasts) and subsequently to the origin of the plant kingdom. The underlying mechanism and the identities of the partners in this monophyletic event remain elusive.
To shed light on this evolutionary process, we sequenced the genome of a cyanobacterium residing extracellularly in an endosymbiosis with a plant, the water-fern Azolla filiculoides Lam. This symbiosis was selected as it has characters which make it unique among extant cyanobacterial plant symbioses: the cyanobacterium lacks autonomous growth and is vertically transmitted between plant generations. Our results reveal features of evolutionary significance. The genome is in an eroding state, evidenced by a large proportion of pseudogenes (31.2%) and a high frequency of transposable elements (approximately 600) scattered throughout the genome. Pseudogenization is found in genes such as the replication initiator dnaA and DNA repair genes, considered essential to free-living cyanobacteria. For some functional categories of genes pseudogenes are more prevalent than functional genes. Loss of function is apparent even within the 'core' gene categories of bacteria, such as genes involved in glycolysis and nutrient uptake. In contrast, serving as a critical source of nitrogen for the host, genes related to metabolic processes such as cell differentiation and nitrogen-fixation are well preserved.
This is the first finding of genome degradation in a plant symbiont and phenotypically complex cyanobacterium and one of only a few extracellular endosymbionts described showing signs of reductive genome evolution. Our findings suggest an ongoing selective streamlining of this cyanobacterial genome which has resulted in an organism devoted to nitrogen fixation and devoid of autonomous growth. The cyanobacterial symbiont of Azolla can thus be considered at the initial phase of a transition from free-living organism to a nitrogen-fixing plant entity, a transition process which may mimic what drove the evolution of chloroplasts from a cyanobacterial ancestor.</description><subject>Acids</subject><subject>Azolla</subject><subject>Azolla filiculoides</subject><subject>Azolla microphylla</subject><subject>Bacteria</subject><subject>Biodegradation</subject><subject>Bioinformatics</subject><subject>Biological Evolution</subject><subject>Cell differentiation</subject><subject>Chloroplasts</subject><subject>Core loss</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - genetics</subject><subject>Cyanobacteria - growth & development</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA repair</subject><subject>Endosymbionts</subject><subject>Erosion</subject><subject>Evolution</subject><subject>Evolutionary Biology</subject><subject>Evolutionary Biology/Genomics</subject><subject>Ferns - microbiology</subject><subject>Genes</subject><subject>Genetics and Genomics/Microbial Evolution and Genomics</subject><subject>Genome, Bacterial - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Glycolysis</subject><subject>Identification</subject><subject>Microbiology/Plant-Biotic Interactions</subject><subject>Microscopy</subject><subject>Nitrogen</subject><subject>Nitrogen fixation</subject><subject>Nitrogen Fixation - genetics</subject><subject>Nitrogen Fixation - physiology</subject><subject>Nostoc azollae</subject><subject>Nutrient uptake</subject><subject>Phase transitions</subject><subject>Photosynthesis</subject><subject>Phylogenetics</subject><subject>Plant Biology/Plant-Biotic Interactions</subject><subject>Plant Physiology</subject><subject>Plant sciences</subject><subject>Plastids</subject><subject>Pseudogenes</subject><subject>reductive evolution</subject><subject>Streamlining</subject><subject>Symbiosis</subject><subject>Symbiosis - genetics</subject><subject>Symbiosis - physiology</subject><subject>Transposons</subject><subject>växtfysiologi</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A9FBQRHcNV-TSW6EpWpdKBT86G3IZs7spmSSdZKp3X9vtrstHSkoc5Ehec57ct7wFsVzjKaY1vjDRRh6r910HTxMEcKYCf6gOMSSkgkniD68839QPInxAqGKCs4fFwcEcSI4RocFnIAPHZTQh2iDL60vdelt6sMS_KS1V9Yvy0vokzXauU2Zeu1jZ1OCpgTfhLjpFjbk07IbXF7AucHpvjQb7cNCmwS9HbqnxaNWuwjP9utR8fPL5x_HXyenZyfz49npxNSiThNBGkJAGMS0NJRA27JWcFTrGlWgF8AkCC0p5gxjzQ0wJrUQmmtNCSKU0aPi5U537UJUe4eiwkRiITnjNBPzHdEEfaHWve10v1FBW3W9Efql0tthHShSCYZ5tZBNJZnhQuauRLYacyIhG5i13u-04m9YD4uR2id7PrtWi4PCuEaiyvjH_eWGRQeNAZ_NdKOq8Ym3K7UMl4pIhAjeTvdqJxBisioam8CsTPAeTMpNKoauLXi779KHXwPEpDobt8-iPYQhqrpiVUVYhf5NUirrbIHM5Ou_yPut3VNLnd2zvg15CrPVVDNWUyHqWvJMTe-h8tdAZ_Mw0Nq8Pyp4NyrITIKrtNRDjGr-_dv_s2fnY_bNHXYF2qVVDG5IOQZxDLIdaHJGYg_t7ZNhpLZRvHFDbaOo9lHMZS_uPvdt0U326B8dBi5a</recordid><startdate>20100708</startdate><enddate>20100708</enddate><creator>Ran, Liang</creator><creator>Larsson, John</creator><creator>Vigil-Stenman, Theoden</creator><creator>Nylander, Johan A A</creator><creator>Ininbergs, Karolina</creator><creator>Zheng, Wei-Wen</creator><creator>Lapidus, Alla</creator><creator>Lowry, Stephen</creator><creator>Haselkorn, Robert</creator><creator>Bergman, Birgitta</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20100708</creationdate><title>Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium</title><author>Ran, Liang ; Larsson, John ; Vigil-Stenman, Theoden ; Nylander, Johan A A ; Ininbergs, Karolina ; Zheng, Wei-Wen ; Lapidus, Alla ; Lowry, Stephen ; Haselkorn, Robert ; Bergman, Birgitta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c787t-82d22e8c04a9c32eff4f8607a705eabe49e8a9316411a6ce449a88a6aa3202343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acids</topic><topic>Azolla</topic><topic>Azolla filiculoides</topic><topic>Azolla microphylla</topic><topic>Bacteria</topic><topic>Biodegradation</topic><topic>Bioinformatics</topic><topic>Biological Evolution</topic><topic>Cell differentiation</topic><topic>Chloroplasts</topic><topic>Core loss</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - genetics</topic><topic>Cyanobacteria - growth & development</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA repair</topic><topic>Endosymbionts</topic><topic>Erosion</topic><topic>Evolution</topic><topic>Evolutionary Biology</topic><topic>Evolutionary Biology/Genomics</topic><topic>Ferns - microbiology</topic><topic>Genes</topic><topic>Genetics and Genomics/Microbial Evolution and Genomics</topic><topic>Genome, Bacterial - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Glycolysis</topic><topic>Identification</topic><topic>Microbiology/Plant-Biotic Interactions</topic><topic>Microscopy</topic><topic>Nitrogen</topic><topic>Nitrogen fixation</topic><topic>Nitrogen Fixation - genetics</topic><topic>Nitrogen Fixation - physiology</topic><topic>Nostoc azollae</topic><topic>Nutrient uptake</topic><topic>Phase transitions</topic><topic>Photosynthesis</topic><topic>Phylogenetics</topic><topic>Plant Biology/Plant-Biotic Interactions</topic><topic>Plant Physiology</topic><topic>Plant sciences</topic><topic>Plastids</topic><topic>Pseudogenes</topic><topic>reductive evolution</topic><topic>Streamlining</topic><topic>Symbiosis</topic><topic>Symbiosis - genetics</topic><topic>Symbiosis - physiology</topic><topic>Transposons</topic><topic>växtfysiologi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ran, Liang</creatorcontrib><creatorcontrib>Larsson, John</creatorcontrib><creatorcontrib>Vigil-Stenman, Theoden</creatorcontrib><creatorcontrib>Nylander, Johan A A</creatorcontrib><creatorcontrib>Ininbergs, Karolina</creatorcontrib><creatorcontrib>Zheng, Wei-Wen</creatorcontrib><creatorcontrib>Lapidus, Alla</creatorcontrib><creatorcontrib>Lowry, Stephen</creatorcontrib><creatorcontrib>Haselkorn, Robert</creatorcontrib><creatorcontrib>Bergman, Birgitta</creatorcontrib><creatorcontrib>Joint Genome Institute (JGI)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Agriculture & Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ran, Liang</au><au>Larsson, John</au><au>Vigil-Stenman, Theoden</au><au>Nylander, Johan A A</au><au>Ininbergs, Karolina</au><au>Zheng, Wei-Wen</au><au>Lapidus, Alla</au><au>Lowry, Stephen</au><au>Haselkorn, Robert</au><au>Bergman, Birgitta</au><aucorp>Joint Genome Institute (JGI)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-07-08</date><risdate>2010</risdate><volume>5</volume><issue>7</issue><spage>e11486</spage><epage>e11486</epage><pages>e11486-e11486</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>An ancient cyanobacterial incorporation into a eukaryotic organism led to the evolution of plastids (chloroplasts) and subsequently to the origin of the plant kingdom. The underlying mechanism and the identities of the partners in this monophyletic event remain elusive.
To shed light on this evolutionary process, we sequenced the genome of a cyanobacterium residing extracellularly in an endosymbiosis with a plant, the water-fern Azolla filiculoides Lam. This symbiosis was selected as it has characters which make it unique among extant cyanobacterial plant symbioses: the cyanobacterium lacks autonomous growth and is vertically transmitted between plant generations. Our results reveal features of evolutionary significance. The genome is in an eroding state, evidenced by a large proportion of pseudogenes (31.2%) and a high frequency of transposable elements (approximately 600) scattered throughout the genome. Pseudogenization is found in genes such as the replication initiator dnaA and DNA repair genes, considered essential to free-living cyanobacteria. For some functional categories of genes pseudogenes are more prevalent than functional genes. Loss of function is apparent even within the 'core' gene categories of bacteria, such as genes involved in glycolysis and nutrient uptake. In contrast, serving as a critical source of nitrogen for the host, genes related to metabolic processes such as cell differentiation and nitrogen-fixation are well preserved.
This is the first finding of genome degradation in a plant symbiont and phenotypically complex cyanobacterium and one of only a few extracellular endosymbionts described showing signs of reductive genome evolution. Our findings suggest an ongoing selective streamlining of this cyanobacterial genome which has resulted in an organism devoted to nitrogen fixation and devoid of autonomous growth. The cyanobacterial symbiont of Azolla can thus be considered at the initial phase of a transition from free-living organism to a nitrogen-fixing plant entity, a transition process which may mimic what drove the evolution of chloroplasts from a cyanobacterial ancestor.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20628610</pmid><doi>10.1371/journal.pone.0011486</doi><tpages>e11486</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2010-07, Vol.5 (7), p.e11486-e11486 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1291896463 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Acids Azolla Azolla filiculoides Azolla microphylla Bacteria Biodegradation Bioinformatics Biological Evolution Cell differentiation Chloroplasts Core loss Cyanobacteria Cyanobacteria - genetics Cyanobacteria - growth & development Deoxyribonucleic acid DNA DNA biosynthesis DNA repair Endosymbionts Erosion Evolution Evolutionary Biology Evolutionary Biology/Genomics Ferns - microbiology Genes Genetics and Genomics/Microbial Evolution and Genomics Genome, Bacterial - genetics Genomes Genomics Glycolysis Identification Microbiology/Plant-Biotic Interactions Microscopy Nitrogen Nitrogen fixation Nitrogen Fixation - genetics Nitrogen Fixation - physiology Nostoc azollae Nutrient uptake Phase transitions Photosynthesis Phylogenetics Plant Biology/Plant-Biotic Interactions Plant Physiology Plant sciences Plastids Pseudogenes reductive evolution Streamlining Symbiosis Symbiosis - genetics Symbiosis - physiology Transposons växtfysiologi |
title | Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T04%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20erosion%20in%20a%20nitrogen-fixing%20vertically%20transmitted%20endosymbiotic%20multicellular%20cyanobacterium&rft.jtitle=PloS%20one&rft.au=Ran,%20Liang&rft.aucorp=Joint%20Genome%20Institute%20(JGI)&rft.date=2010-07-08&rft.volume=5&rft.issue=7&rft.spage=e11486&rft.epage=e11486&rft.pages=e11486-e11486&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0011486&rft_dat=%3Cgale_plos_%3EA473887796%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c787t-82d22e8c04a9c32eff4f8607a705eabe49e8a9316411a6ce449a88a6aa3202343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1291896463&rft_id=info:pmid/20628610&rft_galeid=A473887796&rfr_iscdi=true |