Loading…

Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium

An ancient cyanobacterial incorporation into a eukaryotic organism led to the evolution of plastids (chloroplasts) and subsequently to the origin of the plant kingdom. The underlying mechanism and the identities of the partners in this monophyletic event remain elusive. To shed light on this evoluti...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2010-07, Vol.5 (7), p.e11486-e11486
Main Authors: Ran, Liang, Larsson, John, Vigil-Stenman, Theoden, Nylander, Johan A A, Ininbergs, Karolina, Zheng, Wei-Wen, Lapidus, Alla, Lowry, Stephen, Haselkorn, Robert, Bergman, Birgitta
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c787t-82d22e8c04a9c32eff4f8607a705eabe49e8a9316411a6ce449a88a6aa3202343
cites cdi_FETCH-LOGICAL-c787t-82d22e8c04a9c32eff4f8607a705eabe49e8a9316411a6ce449a88a6aa3202343
container_end_page e11486
container_issue 7
container_start_page e11486
container_title PloS one
container_volume 5
creator Ran, Liang
Larsson, John
Vigil-Stenman, Theoden
Nylander, Johan A A
Ininbergs, Karolina
Zheng, Wei-Wen
Lapidus, Alla
Lowry, Stephen
Haselkorn, Robert
Bergman, Birgitta
description An ancient cyanobacterial incorporation into a eukaryotic organism led to the evolution of plastids (chloroplasts) and subsequently to the origin of the plant kingdom. The underlying mechanism and the identities of the partners in this monophyletic event remain elusive. To shed light on this evolutionary process, we sequenced the genome of a cyanobacterium residing extracellularly in an endosymbiosis with a plant, the water-fern Azolla filiculoides Lam. This symbiosis was selected as it has characters which make it unique among extant cyanobacterial plant symbioses: the cyanobacterium lacks autonomous growth and is vertically transmitted between plant generations. Our results reveal features of evolutionary significance. The genome is in an eroding state, evidenced by a large proportion of pseudogenes (31.2%) and a high frequency of transposable elements (approximately 600) scattered throughout the genome. Pseudogenization is found in genes such as the replication initiator dnaA and DNA repair genes, considered essential to free-living cyanobacteria. For some functional categories of genes pseudogenes are more prevalent than functional genes. Loss of function is apparent even within the 'core' gene categories of bacteria, such as genes involved in glycolysis and nutrient uptake. In contrast, serving as a critical source of nitrogen for the host, genes related to metabolic processes such as cell differentiation and nitrogen-fixation are well preserved. This is the first finding of genome degradation in a plant symbiont and phenotypically complex cyanobacterium and one of only a few extracellular endosymbionts described showing signs of reductive genome evolution. Our findings suggest an ongoing selective streamlining of this cyanobacterial genome which has resulted in an organism devoted to nitrogen fixation and devoid of autonomous growth. The cyanobacterial symbiont of Azolla can thus be considered at the initial phase of a transition from free-living organism to a nitrogen-fixing plant entity, a transition process which may mimic what drove the evolution of chloroplasts from a cyanobacterial ancestor.
doi_str_mv 10.1371/journal.pone.0011486
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1291896463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473887796</galeid><doaj_id>oai_doaj_org_article_2584165b9d594c68941129fa1629e062</doaj_id><sourcerecordid>A473887796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c787t-82d22e8c04a9c32eff4f8607a705eabe49e8a9316411a6ce449a88a6aa3202343</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A9FBQRHcNV-TSW6EpWpdKBT86G3IZs7spmSSdZKp3X9vtrstHSkoc5Ehec57ct7wFsVzjKaY1vjDRRh6r910HTxMEcKYCf6gOMSSkgkniD68839QPInxAqGKCs4fFwcEcSI4RocFnIAPHZTQh2iDL60vdelt6sMS_KS1V9Yvy0vokzXauU2Zeu1jZ1OCpgTfhLjpFjbk07IbXF7AucHpvjQb7cNCmwS9HbqnxaNWuwjP9utR8fPL5x_HXyenZyfz49npxNSiThNBGkJAGMS0NJRA27JWcFTrGlWgF8AkCC0p5gxjzQ0wJrUQmmtNCSKU0aPi5U537UJUe4eiwkRiITnjNBPzHdEEfaHWve10v1FBW3W9Efql0tthHShSCYZ5tZBNJZnhQuauRLYacyIhG5i13u-04m9YD4uR2id7PrtWi4PCuEaiyvjH_eWGRQeNAZ_NdKOq8Ym3K7UMl4pIhAjeTvdqJxBisioam8CsTPAeTMpNKoauLXi779KHXwPEpDobt8-iPYQhqrpiVUVYhf5NUirrbIHM5Ou_yPut3VNLnd2zvg15CrPVVDNWUyHqWvJMTe-h8tdAZ_Mw0Nq8Pyp4NyrITIKrtNRDjGr-_dv_s2fnY_bNHXYF2qVVDG5IOQZxDLIdaHJGYg_t7ZNhpLZRvHFDbaOo9lHMZS_uPvdt0U326B8dBi5a</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1291896463</pqid></control><display><type>article</type><title>Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Ran, Liang ; Larsson, John ; Vigil-Stenman, Theoden ; Nylander, Johan A A ; Ininbergs, Karolina ; Zheng, Wei-Wen ; Lapidus, Alla ; Lowry, Stephen ; Haselkorn, Robert ; Bergman, Birgitta</creator><creatorcontrib>Ran, Liang ; Larsson, John ; Vigil-Stenman, Theoden ; Nylander, Johan A A ; Ininbergs, Karolina ; Zheng, Wei-Wen ; Lapidus, Alla ; Lowry, Stephen ; Haselkorn, Robert ; Bergman, Birgitta ; Joint Genome Institute (JGI)</creatorcontrib><description>An ancient cyanobacterial incorporation into a eukaryotic organism led to the evolution of plastids (chloroplasts) and subsequently to the origin of the plant kingdom. The underlying mechanism and the identities of the partners in this monophyletic event remain elusive. To shed light on this evolutionary process, we sequenced the genome of a cyanobacterium residing extracellularly in an endosymbiosis with a plant, the water-fern Azolla filiculoides Lam. This symbiosis was selected as it has characters which make it unique among extant cyanobacterial plant symbioses: the cyanobacterium lacks autonomous growth and is vertically transmitted between plant generations. Our results reveal features of evolutionary significance. The genome is in an eroding state, evidenced by a large proportion of pseudogenes (31.2%) and a high frequency of transposable elements (approximately 600) scattered throughout the genome. Pseudogenization is found in genes such as the replication initiator dnaA and DNA repair genes, considered essential to free-living cyanobacteria. For some functional categories of genes pseudogenes are more prevalent than functional genes. Loss of function is apparent even within the 'core' gene categories of bacteria, such as genes involved in glycolysis and nutrient uptake. In contrast, serving as a critical source of nitrogen for the host, genes related to metabolic processes such as cell differentiation and nitrogen-fixation are well preserved. This is the first finding of genome degradation in a plant symbiont and phenotypically complex cyanobacterium and one of only a few extracellular endosymbionts described showing signs of reductive genome evolution. Our findings suggest an ongoing selective streamlining of this cyanobacterial genome which has resulted in an organism devoted to nitrogen fixation and devoid of autonomous growth. The cyanobacterial symbiont of Azolla can thus be considered at the initial phase of a transition from free-living organism to a nitrogen-fixing plant entity, a transition process which may mimic what drove the evolution of chloroplasts from a cyanobacterial ancestor.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0011486</identifier><identifier>PMID: 20628610</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Azolla ; Azolla filiculoides ; Azolla microphylla ; Bacteria ; Biodegradation ; Bioinformatics ; Biological Evolution ; Cell differentiation ; Chloroplasts ; Core loss ; Cyanobacteria ; Cyanobacteria - genetics ; Cyanobacteria - growth &amp; development ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA repair ; Endosymbionts ; Erosion ; Evolution ; Evolutionary Biology ; Evolutionary Biology/Genomics ; Ferns - microbiology ; Genes ; Genetics and Genomics/Microbial Evolution and Genomics ; Genome, Bacterial - genetics ; Genomes ; Genomics ; Glycolysis ; Identification ; Microbiology/Plant-Biotic Interactions ; Microscopy ; Nitrogen ; Nitrogen fixation ; Nitrogen Fixation - genetics ; Nitrogen Fixation - physiology ; Nostoc azollae ; Nutrient uptake ; Phase transitions ; Photosynthesis ; Phylogenetics ; Plant Biology/Plant-Biotic Interactions ; Plant Physiology ; Plant sciences ; Plastids ; Pseudogenes ; reductive evolution ; Streamlining ; Symbiosis ; Symbiosis - genetics ; Symbiosis - physiology ; Transposons ; växtfysiologi</subject><ispartof>PloS one, 2010-07, Vol.5 (7), p.e11486-e11486</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Ran et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Ran et al. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c787t-82d22e8c04a9c32eff4f8607a705eabe49e8a9316411a6ce449a88a6aa3202343</citedby><cites>FETCH-LOGICAL-c787t-82d22e8c04a9c32eff4f8607a705eabe49e8a9316411a6ce449a88a6aa3202343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1291896463/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1291896463?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25730,27900,27901,36988,36989,44565,53765,53767,75095</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20628610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1154034$$D View this record in Osti.gov$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-117085$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ran, Liang</creatorcontrib><creatorcontrib>Larsson, John</creatorcontrib><creatorcontrib>Vigil-Stenman, Theoden</creatorcontrib><creatorcontrib>Nylander, Johan A A</creatorcontrib><creatorcontrib>Ininbergs, Karolina</creatorcontrib><creatorcontrib>Zheng, Wei-Wen</creatorcontrib><creatorcontrib>Lapidus, Alla</creatorcontrib><creatorcontrib>Lowry, Stephen</creatorcontrib><creatorcontrib>Haselkorn, Robert</creatorcontrib><creatorcontrib>Bergman, Birgitta</creatorcontrib><creatorcontrib>Joint Genome Institute (JGI)</creatorcontrib><title>Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>An ancient cyanobacterial incorporation into a eukaryotic organism led to the evolution of plastids (chloroplasts) and subsequently to the origin of the plant kingdom. The underlying mechanism and the identities of the partners in this monophyletic event remain elusive. To shed light on this evolutionary process, we sequenced the genome of a cyanobacterium residing extracellularly in an endosymbiosis with a plant, the water-fern Azolla filiculoides Lam. This symbiosis was selected as it has characters which make it unique among extant cyanobacterial plant symbioses: the cyanobacterium lacks autonomous growth and is vertically transmitted between plant generations. Our results reveal features of evolutionary significance. The genome is in an eroding state, evidenced by a large proportion of pseudogenes (31.2%) and a high frequency of transposable elements (approximately 600) scattered throughout the genome. Pseudogenization is found in genes such as the replication initiator dnaA and DNA repair genes, considered essential to free-living cyanobacteria. For some functional categories of genes pseudogenes are more prevalent than functional genes. Loss of function is apparent even within the 'core' gene categories of bacteria, such as genes involved in glycolysis and nutrient uptake. In contrast, serving as a critical source of nitrogen for the host, genes related to metabolic processes such as cell differentiation and nitrogen-fixation are well preserved. This is the first finding of genome degradation in a plant symbiont and phenotypically complex cyanobacterium and one of only a few extracellular endosymbionts described showing signs of reductive genome evolution. Our findings suggest an ongoing selective streamlining of this cyanobacterial genome which has resulted in an organism devoted to nitrogen fixation and devoid of autonomous growth. The cyanobacterial symbiont of Azolla can thus be considered at the initial phase of a transition from free-living organism to a nitrogen-fixing plant entity, a transition process which may mimic what drove the evolution of chloroplasts from a cyanobacterial ancestor.</description><subject>Acids</subject><subject>Azolla</subject><subject>Azolla filiculoides</subject><subject>Azolla microphylla</subject><subject>Bacteria</subject><subject>Biodegradation</subject><subject>Bioinformatics</subject><subject>Biological Evolution</subject><subject>Cell differentiation</subject><subject>Chloroplasts</subject><subject>Core loss</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - genetics</subject><subject>Cyanobacteria - growth &amp; development</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA repair</subject><subject>Endosymbionts</subject><subject>Erosion</subject><subject>Evolution</subject><subject>Evolutionary Biology</subject><subject>Evolutionary Biology/Genomics</subject><subject>Ferns - microbiology</subject><subject>Genes</subject><subject>Genetics and Genomics/Microbial Evolution and Genomics</subject><subject>Genome, Bacterial - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Glycolysis</subject><subject>Identification</subject><subject>Microbiology/Plant-Biotic Interactions</subject><subject>Microscopy</subject><subject>Nitrogen</subject><subject>Nitrogen fixation</subject><subject>Nitrogen Fixation - genetics</subject><subject>Nitrogen Fixation - physiology</subject><subject>Nostoc azollae</subject><subject>Nutrient uptake</subject><subject>Phase transitions</subject><subject>Photosynthesis</subject><subject>Phylogenetics</subject><subject>Plant Biology/Plant-Biotic Interactions</subject><subject>Plant Physiology</subject><subject>Plant sciences</subject><subject>Plastids</subject><subject>Pseudogenes</subject><subject>reductive evolution</subject><subject>Streamlining</subject><subject>Symbiosis</subject><subject>Symbiosis - genetics</subject><subject>Symbiosis - physiology</subject><subject>Transposons</subject><subject>växtfysiologi</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A9FBQRHcNV-TSW6EpWpdKBT86G3IZs7spmSSdZKp3X9vtrstHSkoc5Ehec57ct7wFsVzjKaY1vjDRRh6r910HTxMEcKYCf6gOMSSkgkniD68839QPInxAqGKCs4fFwcEcSI4RocFnIAPHZTQh2iDL60vdelt6sMS_KS1V9Yvy0vokzXauU2Zeu1jZ1OCpgTfhLjpFjbk07IbXF7AucHpvjQb7cNCmwS9HbqnxaNWuwjP9utR8fPL5x_HXyenZyfz49npxNSiThNBGkJAGMS0NJRA27JWcFTrGlWgF8AkCC0p5gxjzQ0wJrUQmmtNCSKU0aPi5U537UJUe4eiwkRiITnjNBPzHdEEfaHWve10v1FBW3W9Efql0tthHShSCYZ5tZBNJZnhQuauRLYacyIhG5i13u-04m9YD4uR2id7PrtWi4PCuEaiyvjH_eWGRQeNAZ_NdKOq8Ym3K7UMl4pIhAjeTvdqJxBisioam8CsTPAeTMpNKoauLXi779KHXwPEpDobt8-iPYQhqrpiVUVYhf5NUirrbIHM5Ou_yPut3VNLnd2zvg15CrPVVDNWUyHqWvJMTe-h8tdAZ_Mw0Nq8Pyp4NyrITIKrtNRDjGr-_dv_s2fnY_bNHXYF2qVVDG5IOQZxDLIdaHJGYg_t7ZNhpLZRvHFDbaOo9lHMZS_uPvdt0U326B8dBi5a</recordid><startdate>20100708</startdate><enddate>20100708</enddate><creator>Ran, Liang</creator><creator>Larsson, John</creator><creator>Vigil-Stenman, Theoden</creator><creator>Nylander, Johan A A</creator><creator>Ininbergs, Karolina</creator><creator>Zheng, Wei-Wen</creator><creator>Lapidus, Alla</creator><creator>Lowry, Stephen</creator><creator>Haselkorn, Robert</creator><creator>Bergman, Birgitta</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20100708</creationdate><title>Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium</title><author>Ran, Liang ; Larsson, John ; Vigil-Stenman, Theoden ; Nylander, Johan A A ; Ininbergs, Karolina ; Zheng, Wei-Wen ; Lapidus, Alla ; Lowry, Stephen ; Haselkorn, Robert ; Bergman, Birgitta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c787t-82d22e8c04a9c32eff4f8607a705eabe49e8a9316411a6ce449a88a6aa3202343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acids</topic><topic>Azolla</topic><topic>Azolla filiculoides</topic><topic>Azolla microphylla</topic><topic>Bacteria</topic><topic>Biodegradation</topic><topic>Bioinformatics</topic><topic>Biological Evolution</topic><topic>Cell differentiation</topic><topic>Chloroplasts</topic><topic>Core loss</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - genetics</topic><topic>Cyanobacteria - growth &amp; development</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA repair</topic><topic>Endosymbionts</topic><topic>Erosion</topic><topic>Evolution</topic><topic>Evolutionary Biology</topic><topic>Evolutionary Biology/Genomics</topic><topic>Ferns - microbiology</topic><topic>Genes</topic><topic>Genetics and Genomics/Microbial Evolution and Genomics</topic><topic>Genome, Bacterial - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Glycolysis</topic><topic>Identification</topic><topic>Microbiology/Plant-Biotic Interactions</topic><topic>Microscopy</topic><topic>Nitrogen</topic><topic>Nitrogen fixation</topic><topic>Nitrogen Fixation - genetics</topic><topic>Nitrogen Fixation - physiology</topic><topic>Nostoc azollae</topic><topic>Nutrient uptake</topic><topic>Phase transitions</topic><topic>Photosynthesis</topic><topic>Phylogenetics</topic><topic>Plant Biology/Plant-Biotic Interactions</topic><topic>Plant Physiology</topic><topic>Plant sciences</topic><topic>Plastids</topic><topic>Pseudogenes</topic><topic>reductive evolution</topic><topic>Streamlining</topic><topic>Symbiosis</topic><topic>Symbiosis - genetics</topic><topic>Symbiosis - physiology</topic><topic>Transposons</topic><topic>växtfysiologi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ran, Liang</creatorcontrib><creatorcontrib>Larsson, John</creatorcontrib><creatorcontrib>Vigil-Stenman, Theoden</creatorcontrib><creatorcontrib>Nylander, Johan A A</creatorcontrib><creatorcontrib>Ininbergs, Karolina</creatorcontrib><creatorcontrib>Zheng, Wei-Wen</creatorcontrib><creatorcontrib>Lapidus, Alla</creatorcontrib><creatorcontrib>Lowry, Stephen</creatorcontrib><creatorcontrib>Haselkorn, Robert</creatorcontrib><creatorcontrib>Bergman, Birgitta</creatorcontrib><creatorcontrib>Joint Genome Institute (JGI)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ran, Liang</au><au>Larsson, John</au><au>Vigil-Stenman, Theoden</au><au>Nylander, Johan A A</au><au>Ininbergs, Karolina</au><au>Zheng, Wei-Wen</au><au>Lapidus, Alla</au><au>Lowry, Stephen</au><au>Haselkorn, Robert</au><au>Bergman, Birgitta</au><aucorp>Joint Genome Institute (JGI)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-07-08</date><risdate>2010</risdate><volume>5</volume><issue>7</issue><spage>e11486</spage><epage>e11486</epage><pages>e11486-e11486</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>An ancient cyanobacterial incorporation into a eukaryotic organism led to the evolution of plastids (chloroplasts) and subsequently to the origin of the plant kingdom. The underlying mechanism and the identities of the partners in this monophyletic event remain elusive. To shed light on this evolutionary process, we sequenced the genome of a cyanobacterium residing extracellularly in an endosymbiosis with a plant, the water-fern Azolla filiculoides Lam. This symbiosis was selected as it has characters which make it unique among extant cyanobacterial plant symbioses: the cyanobacterium lacks autonomous growth and is vertically transmitted between plant generations. Our results reveal features of evolutionary significance. The genome is in an eroding state, evidenced by a large proportion of pseudogenes (31.2%) and a high frequency of transposable elements (approximately 600) scattered throughout the genome. Pseudogenization is found in genes such as the replication initiator dnaA and DNA repair genes, considered essential to free-living cyanobacteria. For some functional categories of genes pseudogenes are more prevalent than functional genes. Loss of function is apparent even within the 'core' gene categories of bacteria, such as genes involved in glycolysis and nutrient uptake. In contrast, serving as a critical source of nitrogen for the host, genes related to metabolic processes such as cell differentiation and nitrogen-fixation are well preserved. This is the first finding of genome degradation in a plant symbiont and phenotypically complex cyanobacterium and one of only a few extracellular endosymbionts described showing signs of reductive genome evolution. Our findings suggest an ongoing selective streamlining of this cyanobacterial genome which has resulted in an organism devoted to nitrogen fixation and devoid of autonomous growth. The cyanobacterial symbiont of Azolla can thus be considered at the initial phase of a transition from free-living organism to a nitrogen-fixing plant entity, a transition process which may mimic what drove the evolution of chloroplasts from a cyanobacterial ancestor.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20628610</pmid><doi>10.1371/journal.pone.0011486</doi><tpages>e11486</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2010-07, Vol.5 (7), p.e11486-e11486
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1291896463
source Publicly Available Content (ProQuest); PubMed Central
subjects Acids
Azolla
Azolla filiculoides
Azolla microphylla
Bacteria
Biodegradation
Bioinformatics
Biological Evolution
Cell differentiation
Chloroplasts
Core loss
Cyanobacteria
Cyanobacteria - genetics
Cyanobacteria - growth & development
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA repair
Endosymbionts
Erosion
Evolution
Evolutionary Biology
Evolutionary Biology/Genomics
Ferns - microbiology
Genes
Genetics and Genomics/Microbial Evolution and Genomics
Genome, Bacterial - genetics
Genomes
Genomics
Glycolysis
Identification
Microbiology/Plant-Biotic Interactions
Microscopy
Nitrogen
Nitrogen fixation
Nitrogen Fixation - genetics
Nitrogen Fixation - physiology
Nostoc azollae
Nutrient uptake
Phase transitions
Photosynthesis
Phylogenetics
Plant Biology/Plant-Biotic Interactions
Plant Physiology
Plant sciences
Plastids
Pseudogenes
reductive evolution
Streamlining
Symbiosis
Symbiosis - genetics
Symbiosis - physiology
Transposons
växtfysiologi
title Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T04%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20erosion%20in%20a%20nitrogen-fixing%20vertically%20transmitted%20endosymbiotic%20multicellular%20cyanobacterium&rft.jtitle=PloS%20one&rft.au=Ran,%20Liang&rft.aucorp=Joint%20Genome%20Institute%20(JGI)&rft.date=2010-07-08&rft.volume=5&rft.issue=7&rft.spage=e11486&rft.epage=e11486&rft.pages=e11486-e11486&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0011486&rft_dat=%3Cgale_plos_%3EA473887796%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c787t-82d22e8c04a9c32eff4f8607a705eabe49e8a9316411a6ce449a88a6aa3202343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1291896463&rft_id=info:pmid/20628610&rft_galeid=A473887796&rfr_iscdi=true