Loading…

Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites

The geometric and subcellular organization of axon arbors distributes and regulates electrical signaling in neurons and networks, but the underlying mechanisms have remained elusive. In rodent cerebellar cortex, stellate interneurons elaborate characteristic axon arbors that selectively innervate Pu...

Full description

Saved in:
Bibliographic Details
Published in:PLoS biology 2008-04, Vol.6 (4), p.e103-e103
Main Authors: Ango, Fabrice, Wu, Caizhi, Van der Want, Johannes J, Wu, Priscilla, Schachner, Melitta, Huang, Z Josh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c627t-ff125572b0bacce651e6d00dd58c274ecab35ae3d02481954cf42863375f84a73
cites cdi_FETCH-LOGICAL-c627t-ff125572b0bacce651e6d00dd58c274ecab35ae3d02481954cf42863375f84a73
container_end_page e103
container_issue 4
container_start_page e103
container_title PLoS biology
container_volume 6
creator Ango, Fabrice
Wu, Caizhi
Van der Want, Johannes J
Wu, Priscilla
Schachner, Melitta
Huang, Z Josh
description The geometric and subcellular organization of axon arbors distributes and regulates electrical signaling in neurons and networks, but the underlying mechanisms have remained elusive. In rodent cerebellar cortex, stellate interneurons elaborate characteristic axon arbors that selectively innervate Purkinje cell dendrites and likely regulate dendritic integration. We used GFP BAC transgenic reporter mice to examine the cellular processes and molecular mechanisms underlying the development of stellate cell axons and their innervation pattern. We show that stellate axons are organized and guided towards Purkinje cell dendrites by an intermediate scaffold of Bergmann glial (BG) fibers. The L1 family immunoglobulin protein Close Homologue of L1 (CHL1) is localized to apical BG fibers and stellate cells during the development of stellate axon arbors. In the absence of CHL1, stellate axons deviate from BG fibers and show aberrant branching and orientation. Furthermore, synapse formation between aberrant stellate axons and Purkinje dendrites is reduced and cannot be maintained, leading to progressive atrophy of axon terminals. These results establish BG fibers as a guiding scaffold and CHL1 a molecular signal in the organization of stellate axon arbors and in directing their dendritic innervation.
doi_str_mv 10.1371/journal.pbio.0060103
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1292065593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_08f2509c4b6a47e28b1631bd3070828a</doaj_id><sourcerecordid>69167925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c627t-ff125572b0bacce651e6d00dd58c274ecab35ae3d02481954cf42863375f84a73</originalsourceid><addsrcrecordid>eNptkl1v0zAYhSMEYmPwDxBYQuKKFn_EH7lB6ipYJ1WCC7i2HPtN65LYw04q2K8nbQNsE1e27POc1z46RfGS4DlhkrzfxSEF085vah_nGAtMMHtUnBNe8plUij--sz8rnuW8w5jSiqqnxRlRZSm5YufF7SWkTWdCQJvWG2SCQ_0WUAIbN8H3PgbUxRbs0AJartYExbQxwd8CulpcLkbWW2R-xpCPqPMj2CMfAqS9OdKxQV-G9N2HHSALbYscBJd8D_l58aQxbYYX03pRfPv08etyNVt_vrpeLtYzK6jsZ01DKOeS1rg21oLgBITD2DmuLJUlWFMzboA5TEtFKl7apqRKMCZ5o0oj2UXx-uR708asp9iyJmMWWHBesVFxfVK4aHb6JvnOpF86Gq-PB-OXtUm9ty1orBrKcWXLWphSAlU1EYzUjmGJFVVm9PowTRvqDpyF0CfT3jO9fxP8Vm_iXlOhKlHx0eDdyWD7AFst1tqHDKnTeJwmFVN7MsrfTvNS_DFA7nXn8yFoEyAOWYuKCFnRg--bB8L_R1GeVDbFnBM0f59AsD707g-lD73TU-9G7NXdX_-DpqKx32_A1k4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292065593</pqid></control><display><type>article</type><title>Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Ango, Fabrice ; Wu, Caizhi ; Van der Want, Johannes J ; Wu, Priscilla ; Schachner, Melitta ; Huang, Z Josh</creator><creatorcontrib>Ango, Fabrice ; Wu, Caizhi ; Van der Want, Johannes J ; Wu, Priscilla ; Schachner, Melitta ; Huang, Z Josh</creatorcontrib><description>The geometric and subcellular organization of axon arbors distributes and regulates electrical signaling in neurons and networks, but the underlying mechanisms have remained elusive. In rodent cerebellar cortex, stellate interneurons elaborate characteristic axon arbors that selectively innervate Purkinje cell dendrites and likely regulate dendritic integration. We used GFP BAC transgenic reporter mice to examine the cellular processes and molecular mechanisms underlying the development of stellate cell axons and their innervation pattern. We show that stellate axons are organized and guided towards Purkinje cell dendrites by an intermediate scaffold of Bergmann glial (BG) fibers. The L1 family immunoglobulin protein Close Homologue of L1 (CHL1) is localized to apical BG fibers and stellate cells during the development of stellate axon arbors. In the absence of CHL1, stellate axons deviate from BG fibers and show aberrant branching and orientation. Furthermore, synapse formation between aberrant stellate axons and Purkinje dendrites is reduced and cannot be maintained, leading to progressive atrophy of axon terminals. These results establish BG fibers as a guiding scaffold and CHL1 a molecular signal in the organization of stellate axon arbors and in directing their dendritic innervation.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.0060103</identifier><identifier>PMID: 18447583</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Artificial chromosomes ; Axons ; Axons - metabolism ; Axons - ultrastructure ; Cell adhesion &amp; migration ; Cell Adhesion Molecules ; Cell Adhesion Molecules - immunology ; Cell Adhesion Molecules - metabolism ; Cell Biology ; Cellular Biology ; Cerebellar Cortex ; Cerebellar Cortex - metabolism ; Climbing ; Dendrites ; Dendrites - metabolism ; Dendrites - ultrastructure ; Experiments ; gamma-Aminobutyric Acid ; gamma-Aminobutyric Acid - metabolism ; Life Sciences ; Mice ; Mice, Transgenic ; Microscopy ; Microscopy, Electron ; Neuroglia ; Neuroglia - metabolism ; Neuroglia - ultrastructure ; Neurons ; Neurons and Cognition ; Neuroscience ; Proteins ; Purkinje Cells ; Purkinje Cells - metabolism ; Purkinje Cells - ultrastructure ; Synapses ; Synapses - physiology</subject><ispartof>PLoS biology, 2008-04, Vol.6 (4), p.e103-e103</ispartof><rights>2008 Ango et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ango F, Wu C, Van der Want JJ, Wu P, Schachner M, et al. (2008) Bergmann Glia and the Recognition Molecule CHL1 Organize GABAergic Axons and Direct Innervation of Purkinje Cell Dendrites. PLoS Biol 6(4): e103. doi:10.1371/journal.pbio.0060103</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2008 Ango et al. 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c627t-ff125572b0bacce651e6d00dd58c274ecab35ae3d02481954cf42863375f84a73</citedby><cites>FETCH-LOGICAL-c627t-ff125572b0bacce651e6d00dd58c274ecab35ae3d02481954cf42863375f84a73</cites><orcidid>0000-0002-5548-209X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1292065593/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1292065593?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18447583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-00707838$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ango, Fabrice</creatorcontrib><creatorcontrib>Wu, Caizhi</creatorcontrib><creatorcontrib>Van der Want, Johannes J</creatorcontrib><creatorcontrib>Wu, Priscilla</creatorcontrib><creatorcontrib>Schachner, Melitta</creatorcontrib><creatorcontrib>Huang, Z Josh</creatorcontrib><title>Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>The geometric and subcellular organization of axon arbors distributes and regulates electrical signaling in neurons and networks, but the underlying mechanisms have remained elusive. In rodent cerebellar cortex, stellate interneurons elaborate characteristic axon arbors that selectively innervate Purkinje cell dendrites and likely regulate dendritic integration. We used GFP BAC transgenic reporter mice to examine the cellular processes and molecular mechanisms underlying the development of stellate cell axons and their innervation pattern. We show that stellate axons are organized and guided towards Purkinje cell dendrites by an intermediate scaffold of Bergmann glial (BG) fibers. The L1 family immunoglobulin protein Close Homologue of L1 (CHL1) is localized to apical BG fibers and stellate cells during the development of stellate axon arbors. In the absence of CHL1, stellate axons deviate from BG fibers and show aberrant branching and orientation. Furthermore, synapse formation between aberrant stellate axons and Purkinje dendrites is reduced and cannot be maintained, leading to progressive atrophy of axon terminals. These results establish BG fibers as a guiding scaffold and CHL1 a molecular signal in the organization of stellate axon arbors and in directing their dendritic innervation.</description><subject>Animals</subject><subject>Artificial chromosomes</subject><subject>Axons</subject><subject>Axons - metabolism</subject><subject>Axons - ultrastructure</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Adhesion Molecules</subject><subject>Cell Adhesion Molecules - immunology</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Cell Biology</subject><subject>Cellular Biology</subject><subject>Cerebellar Cortex</subject><subject>Cerebellar Cortex - metabolism</subject><subject>Climbing</subject><subject>Dendrites</subject><subject>Dendrites - metabolism</subject><subject>Dendrites - ultrastructure</subject><subject>Experiments</subject><subject>gamma-Aminobutyric Acid</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microscopy</subject><subject>Microscopy, Electron</subject><subject>Neuroglia</subject><subject>Neuroglia - metabolism</subject><subject>Neuroglia - ultrastructure</subject><subject>Neurons</subject><subject>Neurons and Cognition</subject><subject>Neuroscience</subject><subject>Proteins</subject><subject>Purkinje Cells</subject><subject>Purkinje Cells - metabolism</subject><subject>Purkinje Cells - ultrastructure</subject><subject>Synapses</subject><subject>Synapses - physiology</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1v0zAYhSMEYmPwDxBYQuKKFn_EH7lB6ipYJ1WCC7i2HPtN65LYw04q2K8nbQNsE1e27POc1z46RfGS4DlhkrzfxSEF085vah_nGAtMMHtUnBNe8plUij--sz8rnuW8w5jSiqqnxRlRZSm5YufF7SWkTWdCQJvWG2SCQ_0WUAIbN8H3PgbUxRbs0AJartYExbQxwd8CulpcLkbWW2R-xpCPqPMj2CMfAqS9OdKxQV-G9N2HHSALbYscBJd8D_l58aQxbYYX03pRfPv08etyNVt_vrpeLtYzK6jsZ01DKOeS1rg21oLgBITD2DmuLJUlWFMzboA5TEtFKl7apqRKMCZ5o0oj2UXx-uR708asp9iyJmMWWHBesVFxfVK4aHb6JvnOpF86Gq-PB-OXtUm9ty1orBrKcWXLWphSAlU1EYzUjmGJFVVm9PowTRvqDpyF0CfT3jO9fxP8Vm_iXlOhKlHx0eDdyWD7AFst1tqHDKnTeJwmFVN7MsrfTvNS_DFA7nXn8yFoEyAOWYuKCFnRg--bB8L_R1GeVDbFnBM0f59AsD707g-lD73TU-9G7NXdX_-DpqKx32_A1k4</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Ango, Fabrice</creator><creator>Wu, Caizhi</creator><creator>Van der Want, Johannes J</creator><creator>Wu, Priscilla</creator><creator>Schachner, Melitta</creator><creator>Huang, Z Josh</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-5548-209X</orcidid></search><sort><creationdate>20080401</creationdate><title>Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites</title><author>Ango, Fabrice ; Wu, Caizhi ; Van der Want, Johannes J ; Wu, Priscilla ; Schachner, Melitta ; Huang, Z Josh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c627t-ff125572b0bacce651e6d00dd58c274ecab35ae3d02481954cf42863375f84a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Artificial chromosomes</topic><topic>Axons</topic><topic>Axons - metabolism</topic><topic>Axons - ultrastructure</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Adhesion Molecules</topic><topic>Cell Adhesion Molecules - immunology</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Cell Biology</topic><topic>Cellular Biology</topic><topic>Cerebellar Cortex</topic><topic>Cerebellar Cortex - metabolism</topic><topic>Climbing</topic><topic>Dendrites</topic><topic>Dendrites - metabolism</topic><topic>Dendrites - ultrastructure</topic><topic>Experiments</topic><topic>gamma-Aminobutyric Acid</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microscopy</topic><topic>Microscopy, Electron</topic><topic>Neuroglia</topic><topic>Neuroglia - metabolism</topic><topic>Neuroglia - ultrastructure</topic><topic>Neurons</topic><topic>Neurons and Cognition</topic><topic>Neuroscience</topic><topic>Proteins</topic><topic>Purkinje Cells</topic><topic>Purkinje Cells - metabolism</topic><topic>Purkinje Cells - ultrastructure</topic><topic>Synapses</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ango, Fabrice</creatorcontrib><creatorcontrib>Wu, Caizhi</creatorcontrib><creatorcontrib>Van der Want, Johannes J</creatorcontrib><creatorcontrib>Wu, Priscilla</creatorcontrib><creatorcontrib>Schachner, Melitta</creatorcontrib><creatorcontrib>Huang, Z Josh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ango, Fabrice</au><au>Wu, Caizhi</au><au>Van der Want, Johannes J</au><au>Wu, Priscilla</au><au>Schachner, Melitta</au><au>Huang, Z Josh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>6</volume><issue>4</issue><spage>e103</spage><epage>e103</epage><pages>e103-e103</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>The geometric and subcellular organization of axon arbors distributes and regulates electrical signaling in neurons and networks, but the underlying mechanisms have remained elusive. In rodent cerebellar cortex, stellate interneurons elaborate characteristic axon arbors that selectively innervate Purkinje cell dendrites and likely regulate dendritic integration. We used GFP BAC transgenic reporter mice to examine the cellular processes and molecular mechanisms underlying the development of stellate cell axons and their innervation pattern. We show that stellate axons are organized and guided towards Purkinje cell dendrites by an intermediate scaffold of Bergmann glial (BG) fibers. The L1 family immunoglobulin protein Close Homologue of L1 (CHL1) is localized to apical BG fibers and stellate cells during the development of stellate axon arbors. In the absence of CHL1, stellate axons deviate from BG fibers and show aberrant branching and orientation. Furthermore, synapse formation between aberrant stellate axons and Purkinje dendrites is reduced and cannot be maintained, leading to progressive atrophy of axon terminals. These results establish BG fibers as a guiding scaffold and CHL1 a molecular signal in the organization of stellate axon arbors and in directing their dendritic innervation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>18447583</pmid><doi>10.1371/journal.pbio.0060103</doi><orcidid>https://orcid.org/0000-0002-5548-209X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2008-04, Vol.6 (4), p.e103-e103
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_1292065593
source Publicly Available Content (ProQuest); PubMed Central
subjects Animals
Artificial chromosomes
Axons
Axons - metabolism
Axons - ultrastructure
Cell adhesion & migration
Cell Adhesion Molecules
Cell Adhesion Molecules - immunology
Cell Adhesion Molecules - metabolism
Cell Biology
Cellular Biology
Cerebellar Cortex
Cerebellar Cortex - metabolism
Climbing
Dendrites
Dendrites - metabolism
Dendrites - ultrastructure
Experiments
gamma-Aminobutyric Acid
gamma-Aminobutyric Acid - metabolism
Life Sciences
Mice
Mice, Transgenic
Microscopy
Microscopy, Electron
Neuroglia
Neuroglia - metabolism
Neuroglia - ultrastructure
Neurons
Neurons and Cognition
Neuroscience
Proteins
Purkinje Cells
Purkinje Cells - metabolism
Purkinje Cells - ultrastructure
Synapses
Synapses - physiology
title Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A24%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bergmann%20glia%20and%20the%20recognition%20molecule%20CHL1%20organize%20GABAergic%20axons%20and%20direct%20innervation%20of%20Purkinje%20cell%20dendrites&rft.jtitle=PLoS%20biology&rft.au=Ango,%20Fabrice&rft.date=2008-04-01&rft.volume=6&rft.issue=4&rft.spage=e103&rft.epage=e103&rft.pages=e103-e103&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.0060103&rft_dat=%3Cproquest_plos_%3E69167925%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c627t-ff125572b0bacce651e6d00dd58c274ecab35ae3d02481954cf42863375f84a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1292065593&rft_id=info:pmid/18447583&rfr_iscdi=true