Loading…

Disulfide bonds in the ectodomain of anthrax toxin receptor 2 are required for the receptor-bound protective-antigen pore to function

Cell-surface receptors play essential roles in anthrax toxin action by providing the toxin with a high-affinity anchor and self-assembly site on the plasma membrane, mediating the toxin entry into cells through endocytosis, and shifting the pH threshold for prepore-to-pore conversion of anthrax toxi...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2010-05, Vol.5 (5), p.e10553-e10553
Main Authors: Sun, Jianjun, Collier, R John
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c691t-6bbfba0cf3ecaec8ac66423f7a6ddcf3bab794a7b447a29c35709fd484d95acf3
cites cdi_FETCH-LOGICAL-c691t-6bbfba0cf3ecaec8ac66423f7a6ddcf3bab794a7b447a29c35709fd484d95acf3
container_end_page e10553
container_issue 5
container_start_page e10553
container_title PloS one
container_volume 5
creator Sun, Jianjun
Collier, R John
description Cell-surface receptors play essential roles in anthrax toxin action by providing the toxin with a high-affinity anchor and self-assembly site on the plasma membrane, mediating the toxin entry into cells through endocytosis, and shifting the pH threshold for prepore-to-pore conversion of anthrax toxin protective antigen (PA) to a more acidic pH, thereby inhibiting premature pore formation. Each of the two known anthrax toxin receptors, ANTXR1 and ANTXR2, has an ectodomain comprised of an N-terminal von Willebrand factor A domain (VWA), which binds PA, and an uncharacterized immunoglobulin-like domain (Ig) that connects VWA to the membrane-spanning domain. Potential roles of the receptor Ig domain in anthrax toxin action have not been investigated heretofore. We expressed and purified the ANTXR2 ectodomain (R2-VWA-Ig) in E. coli and showed that it contains three disulfide bonds: one in R2-VWA and two in R2-Ig. Reduction of the ectodomain inhibited functioning of the pore, as measured by K(+) release from liposomes or Chinese hamster ovary cells or by PA-mediated translocation of a model substrate across the plasma membrane. However, reduction did not affect binding of the ectodomain to PA or the transition of ectodomain-bound PA prepore to the pore conformation. The inhibitory effect depended specifically on reduction of the disulfides within R2-Ig. We conclude that disulfide integrity within R2-Ig is essential for proper functioning of receptor-bound PA pore. This finding provides a novel venue to investigate the mechanism of anthrax toxin action and suggests new strategies for inhibiting toxin action.
doi_str_mv 10.1371/journal.pone.0010553
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1292113655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473896841</galeid><doaj_id>oai_doaj_org_article_92b47b72c5294c978223290d39ff4d69</doaj_id><sourcerecordid>A473896841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-6bbfba0cf3ecaec8ac66423f7a6ddcf3bab794a7b447a29c35709fd484d95acf3</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7jr6DUQLguJDx-bSpnkRlvU2sLDg7TWkucxk6CTdJF3GD-D3NnU6y1T2QfrQ5pzf_3_Sk5wsew7KJUAEvNu6wVveLXtn1bIsQVlV6EF2DiiCRQ1L9PDk-yx7EsK2LCvU1PXj7AyWmNCGgvPs9wcThk4bqfLWWRlyY_O4UbkS0Um342npdM5t3Hi-z6Pbp4BXQvXR-Rzm3Ku0vBmMVzLXKTRqj_midYOVee9dTHbmVhXJx6yVzXuXdNHlerAp4ezT7JHmXVDPpvci-_Hp4_fLL8XV9efV5cVVIWoKYlG3rW55KTRSgivRcFHXGCJNeC1lira8JRRz0mJMOKQCVaSkWuIGS1rxBCyylwffvnOBTR0MDEAKAUB16uAiWx0I6fiW9d7suP_FHDfsb8D5NeM-GtEpRmGLSUugqCDFgpIGQgRpKRHVGsuaJq_3U7Wh3SkplI2edzPTecaaDVu7WwbTKdUVTgZvJgPvbgYVItuZIFTXcavcEBhBCCW2Gku9-oe8_-cmas3T_o3VLpUVoye7wAQ1tG4wSNTyHio9Uu2MSLdNmxSfCd7OBImJah_XfAiBrb59_X_2-uecfX3CbhTv4ia4bhhvTJiD-AAK70LwSt_1GJRsHJZjN9g4LGwaliR7cXo-d6LjdKA_MH8SFQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292113655</pqid></control><display><type>article</type><title>Disulfide bonds in the ectodomain of anthrax toxin receptor 2 are required for the receptor-bound protective-antigen pore to function</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Sun, Jianjun ; Collier, R John</creator><contributor>Ratner, Adam J.</contributor><creatorcontrib>Sun, Jianjun ; Collier, R John ; Ratner, Adam J.</creatorcontrib><description>Cell-surface receptors play essential roles in anthrax toxin action by providing the toxin with a high-affinity anchor and self-assembly site on the plasma membrane, mediating the toxin entry into cells through endocytosis, and shifting the pH threshold for prepore-to-pore conversion of anthrax toxin protective antigen (PA) to a more acidic pH, thereby inhibiting premature pore formation. Each of the two known anthrax toxin receptors, ANTXR1 and ANTXR2, has an ectodomain comprised of an N-terminal von Willebrand factor A domain (VWA), which binds PA, and an uncharacterized immunoglobulin-like domain (Ig) that connects VWA to the membrane-spanning domain. Potential roles of the receptor Ig domain in anthrax toxin action have not been investigated heretofore. We expressed and purified the ANTXR2 ectodomain (R2-VWA-Ig) in E. coli and showed that it contains three disulfide bonds: one in R2-VWA and two in R2-Ig. Reduction of the ectodomain inhibited functioning of the pore, as measured by K(+) release from liposomes or Chinese hamster ovary cells or by PA-mediated translocation of a model substrate across the plasma membrane. However, reduction did not affect binding of the ectodomain to PA or the transition of ectodomain-bound PA prepore to the pore conformation. The inhibitory effect depended specifically on reduction of the disulfides within R2-Ig. We conclude that disulfide integrity within R2-Ig is essential for proper functioning of receptor-bound PA pore. This finding provides a novel venue to investigate the mechanism of anthrax toxin action and suggests new strategies for inhibiting toxin action.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0010553</identifier><identifier>PMID: 20479891</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Analysis ; Animals ; Anthrax ; Antigens ; Antigens, Bacterial - chemistry ; Antigens, Bacterial - metabolism ; Bacterial Toxins - chemistry ; Bacterial Toxins - metabolism ; Binding sites ; Cell Membrane - drug effects ; Cell Membrane - metabolism ; Cell surface ; Chemical bonds ; CHO Cells ; Conformation ; Cricetinae ; Cricetulus ; Disulfide bonds ; Disulfides - metabolism ; E coli ; Endocytosis ; Escherichia coli - metabolism ; Hydrogen-Ion Concentration - drug effects ; Immunoglobulins ; Infectious Diseases/Bacterial Infections ; Kinases ; Liposomes ; Microbiology/Cellular Microbiology and Pathogenesis ; Microbiology/Immunity to Infections ; Molecular Sequence Data ; Oxidation-Reduction - drug effects ; pH effects ; Pore formation ; Potassium - metabolism ; Protective antigen ; Protein Binding - drug effects ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Transport - drug effects ; Receptor mechanisms ; Receptors ; Receptors, Peptide - chemistry ; Receptors, Peptide - metabolism ; Recombinant Proteins - isolation &amp; purification ; Reducing Agents - pharmacology ; Reduction ; Self-assembly ; Sodium Dodecyl Sulfate - pharmacology ; Toxins ; Translocation ; Von Willebrand factor</subject><ispartof>PloS one, 2010-05, Vol.5 (5), p.e10553-e10553</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Sun, Collier. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Sun, Collier. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-6bbfba0cf3ecaec8ac66423f7a6ddcf3bab794a7b447a29c35709fd484d95acf3</citedby><cites>FETCH-LOGICAL-c691t-6bbfba0cf3ecaec8ac66423f7a6ddcf3bab794a7b447a29c35709fd484d95acf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1292113655/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1292113655?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20479891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ratner, Adam J.</contributor><creatorcontrib>Sun, Jianjun</creatorcontrib><creatorcontrib>Collier, R John</creatorcontrib><title>Disulfide bonds in the ectodomain of anthrax toxin receptor 2 are required for the receptor-bound protective-antigen pore to function</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Cell-surface receptors play essential roles in anthrax toxin action by providing the toxin with a high-affinity anchor and self-assembly site on the plasma membrane, mediating the toxin entry into cells through endocytosis, and shifting the pH threshold for prepore-to-pore conversion of anthrax toxin protective antigen (PA) to a more acidic pH, thereby inhibiting premature pore formation. Each of the two known anthrax toxin receptors, ANTXR1 and ANTXR2, has an ectodomain comprised of an N-terminal von Willebrand factor A domain (VWA), which binds PA, and an uncharacterized immunoglobulin-like domain (Ig) that connects VWA to the membrane-spanning domain. Potential roles of the receptor Ig domain in anthrax toxin action have not been investigated heretofore. We expressed and purified the ANTXR2 ectodomain (R2-VWA-Ig) in E. coli and showed that it contains three disulfide bonds: one in R2-VWA and two in R2-Ig. Reduction of the ectodomain inhibited functioning of the pore, as measured by K(+) release from liposomes or Chinese hamster ovary cells or by PA-mediated translocation of a model substrate across the plasma membrane. However, reduction did not affect binding of the ectodomain to PA or the transition of ectodomain-bound PA prepore to the pore conformation. The inhibitory effect depended specifically on reduction of the disulfides within R2-Ig. We conclude that disulfide integrity within R2-Ig is essential for proper functioning of receptor-bound PA pore. This finding provides a novel venue to investigate the mechanism of anthrax toxin action and suggests new strategies for inhibiting toxin action.</description><subject>Amino Acid Sequence</subject><subject>Analysis</subject><subject>Animals</subject><subject>Anthrax</subject><subject>Antigens</subject><subject>Antigens, Bacterial - chemistry</subject><subject>Antigens, Bacterial - metabolism</subject><subject>Bacterial Toxins - chemistry</subject><subject>Bacterial Toxins - metabolism</subject><subject>Binding sites</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - metabolism</subject><subject>Cell surface</subject><subject>Chemical bonds</subject><subject>CHO Cells</subject><subject>Conformation</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Disulfide bonds</subject><subject>Disulfides - metabolism</subject><subject>E coli</subject><subject>Endocytosis</subject><subject>Escherichia coli - metabolism</subject><subject>Hydrogen-Ion Concentration - drug effects</subject><subject>Immunoglobulins</subject><subject>Infectious Diseases/Bacterial Infections</subject><subject>Kinases</subject><subject>Liposomes</subject><subject>Microbiology/Cellular Microbiology and Pathogenesis</subject><subject>Microbiology/Immunity to Infections</subject><subject>Molecular Sequence Data</subject><subject>Oxidation-Reduction - drug effects</subject><subject>pH effects</subject><subject>Pore formation</subject><subject>Potassium - metabolism</subject><subject>Protective antigen</subject><subject>Protein Binding - drug effects</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Transport - drug effects</subject><subject>Receptor mechanisms</subject><subject>Receptors</subject><subject>Receptors, Peptide - chemistry</subject><subject>Receptors, Peptide - metabolism</subject><subject>Recombinant Proteins - isolation &amp; purification</subject><subject>Reducing Agents - pharmacology</subject><subject>Reduction</subject><subject>Self-assembly</subject><subject>Sodium Dodecyl Sulfate - pharmacology</subject><subject>Toxins</subject><subject>Translocation</subject><subject>Von Willebrand factor</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7jr6DUQLguJDx-bSpnkRlvU2sLDg7TWkucxk6CTdJF3GD-D3NnU6y1T2QfrQ5pzf_3_Sk5wsew7KJUAEvNu6wVveLXtn1bIsQVlV6EF2DiiCRQ1L9PDk-yx7EsK2LCvU1PXj7AyWmNCGgvPs9wcThk4bqfLWWRlyY_O4UbkS0Um342npdM5t3Hi-z6Pbp4BXQvXR-Rzm3Ku0vBmMVzLXKTRqj_midYOVee9dTHbmVhXJx6yVzXuXdNHlerAp4ezT7JHmXVDPpvci-_Hp4_fLL8XV9efV5cVVIWoKYlG3rW55KTRSgivRcFHXGCJNeC1lira8JRRz0mJMOKQCVaSkWuIGS1rxBCyylwffvnOBTR0MDEAKAUB16uAiWx0I6fiW9d7suP_FHDfsb8D5NeM-GtEpRmGLSUugqCDFgpIGQgRpKRHVGsuaJq_3U7Wh3SkplI2edzPTecaaDVu7WwbTKdUVTgZvJgPvbgYVItuZIFTXcavcEBhBCCW2Gku9-oe8_-cmas3T_o3VLpUVoye7wAQ1tG4wSNTyHio9Uu2MSLdNmxSfCd7OBImJah_XfAiBrb59_X_2-uecfX3CbhTv4ia4bhhvTJiD-AAK70LwSt_1GJRsHJZjN9g4LGwaliR7cXo-d6LjdKA_MH8SFQ</recordid><startdate>20100510</startdate><enddate>20100510</enddate><creator>Sun, Jianjun</creator><creator>Collier, R John</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100510</creationdate><title>Disulfide bonds in the ectodomain of anthrax toxin receptor 2 are required for the receptor-bound protective-antigen pore to function</title><author>Sun, Jianjun ; Collier, R John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-6bbfba0cf3ecaec8ac66423f7a6ddcf3bab794a7b447a29c35709fd484d95acf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amino Acid Sequence</topic><topic>Analysis</topic><topic>Animals</topic><topic>Anthrax</topic><topic>Antigens</topic><topic>Antigens, Bacterial - chemistry</topic><topic>Antigens, Bacterial - metabolism</topic><topic>Bacterial Toxins - chemistry</topic><topic>Bacterial Toxins - metabolism</topic><topic>Binding sites</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - metabolism</topic><topic>Cell surface</topic><topic>Chemical bonds</topic><topic>CHO Cells</topic><topic>Conformation</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Disulfide bonds</topic><topic>Disulfides - metabolism</topic><topic>E coli</topic><topic>Endocytosis</topic><topic>Escherichia coli - metabolism</topic><topic>Hydrogen-Ion Concentration - drug effects</topic><topic>Immunoglobulins</topic><topic>Infectious Diseases/Bacterial Infections</topic><topic>Kinases</topic><topic>Liposomes</topic><topic>Microbiology/Cellular Microbiology and Pathogenesis</topic><topic>Microbiology/Immunity to Infections</topic><topic>Molecular Sequence Data</topic><topic>Oxidation-Reduction - drug effects</topic><topic>pH effects</topic><topic>Pore formation</topic><topic>Potassium - metabolism</topic><topic>Protective antigen</topic><topic>Protein Binding - drug effects</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Transport - drug effects</topic><topic>Receptor mechanisms</topic><topic>Receptors</topic><topic>Receptors, Peptide - chemistry</topic><topic>Receptors, Peptide - metabolism</topic><topic>Recombinant Proteins - isolation &amp; purification</topic><topic>Reducing Agents - pharmacology</topic><topic>Reduction</topic><topic>Self-assembly</topic><topic>Sodium Dodecyl Sulfate - pharmacology</topic><topic>Toxins</topic><topic>Translocation</topic><topic>Von Willebrand factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jianjun</creatorcontrib><creatorcontrib>Collier, R John</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jianjun</au><au>Collier, R John</au><au>Ratner, Adam J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disulfide bonds in the ectodomain of anthrax toxin receptor 2 are required for the receptor-bound protective-antigen pore to function</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-05-10</date><risdate>2010</risdate><volume>5</volume><issue>5</issue><spage>e10553</spage><epage>e10553</epage><pages>e10553-e10553</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Cell-surface receptors play essential roles in anthrax toxin action by providing the toxin with a high-affinity anchor and self-assembly site on the plasma membrane, mediating the toxin entry into cells through endocytosis, and shifting the pH threshold for prepore-to-pore conversion of anthrax toxin protective antigen (PA) to a more acidic pH, thereby inhibiting premature pore formation. Each of the two known anthrax toxin receptors, ANTXR1 and ANTXR2, has an ectodomain comprised of an N-terminal von Willebrand factor A domain (VWA), which binds PA, and an uncharacterized immunoglobulin-like domain (Ig) that connects VWA to the membrane-spanning domain. Potential roles of the receptor Ig domain in anthrax toxin action have not been investigated heretofore. We expressed and purified the ANTXR2 ectodomain (R2-VWA-Ig) in E. coli and showed that it contains three disulfide bonds: one in R2-VWA and two in R2-Ig. Reduction of the ectodomain inhibited functioning of the pore, as measured by K(+) release from liposomes or Chinese hamster ovary cells or by PA-mediated translocation of a model substrate across the plasma membrane. However, reduction did not affect binding of the ectodomain to PA or the transition of ectodomain-bound PA prepore to the pore conformation. The inhibitory effect depended specifically on reduction of the disulfides within R2-Ig. We conclude that disulfide integrity within R2-Ig is essential for proper functioning of receptor-bound PA pore. This finding provides a novel venue to investigate the mechanism of anthrax toxin action and suggests new strategies for inhibiting toxin action.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20479891</pmid><doi>10.1371/journal.pone.0010553</doi><tpages>e10553</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2010-05, Vol.5 (5), p.e10553-e10553
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1292113655
source Publicly Available Content Database; PubMed Central
subjects Amino Acid Sequence
Analysis
Animals
Anthrax
Antigens
Antigens, Bacterial - chemistry
Antigens, Bacterial - metabolism
Bacterial Toxins - chemistry
Bacterial Toxins - metabolism
Binding sites
Cell Membrane - drug effects
Cell Membrane - metabolism
Cell surface
Chemical bonds
CHO Cells
Conformation
Cricetinae
Cricetulus
Disulfide bonds
Disulfides - metabolism
E coli
Endocytosis
Escherichia coli - metabolism
Hydrogen-Ion Concentration - drug effects
Immunoglobulins
Infectious Diseases/Bacterial Infections
Kinases
Liposomes
Microbiology/Cellular Microbiology and Pathogenesis
Microbiology/Immunity to Infections
Molecular Sequence Data
Oxidation-Reduction - drug effects
pH effects
Pore formation
Potassium - metabolism
Protective antigen
Protein Binding - drug effects
Protein Structure, Quaternary
Protein Structure, Tertiary
Protein Transport - drug effects
Receptor mechanisms
Receptors
Receptors, Peptide - chemistry
Receptors, Peptide - metabolism
Recombinant Proteins - isolation & purification
Reducing Agents - pharmacology
Reduction
Self-assembly
Sodium Dodecyl Sulfate - pharmacology
Toxins
Translocation
Von Willebrand factor
title Disulfide bonds in the ectodomain of anthrax toxin receptor 2 are required for the receptor-bound protective-antigen pore to function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T23%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disulfide%20bonds%20in%20the%20ectodomain%20of%20anthrax%20toxin%20receptor%202%20are%20required%20for%20the%20receptor-bound%20protective-antigen%20pore%20to%20function&rft.jtitle=PloS%20one&rft.au=Sun,%20Jianjun&rft.date=2010-05-10&rft.volume=5&rft.issue=5&rft.spage=e10553&rft.epage=e10553&rft.pages=e10553-e10553&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0010553&rft_dat=%3Cgale_plos_%3EA473896841%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c691t-6bbfba0cf3ecaec8ac66423f7a6ddcf3bab794a7b447a29c35709fd484d95acf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1292113655&rft_id=info:pmid/20479891&rft_galeid=A473896841&rfr_iscdi=true