Loading…

Structural basis for substrate specificity in human monomeric carbonyl reductases

Carbonyl reduction constitutes a phase I reaction for many xenobiotics and is carried out in mammals mainly by members of two protein families, namely aldo-keto reductases and short-chain dehydrogenases/reductases. In addition to their capacity to reduce xenobiotics, several of the enzymes act on en...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2009-10, Vol.4 (10), p.e7113
Main Authors: Pilka, Ewa S, Niesen, Frank H, Lee, Wen Hwa, El-Hawari, Yasser, Dunford, James E, Kochan, Grazyna, Wsol, Vladimir, Martin, Hans-Joerg, Maser, Edmund, Oppermann, Udo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carbonyl reduction constitutes a phase I reaction for many xenobiotics and is carried out in mammals mainly by members of two protein families, namely aldo-keto reductases and short-chain dehydrogenases/reductases. In addition to their capacity to reduce xenobiotics, several of the enzymes act on endogenous compounds such as steroids or eicosanoids. One of the major carbonyl reducing enzymes found in humans is carbonyl reductase 1 (CBR1) with a very broad substrate spectrum. A paralog, carbonyl reductase 3 (CBR3) has about 70% sequence identity and has not been sufficiently characterized to date. Screening of a focused xenobiotic compound library revealed that CBR3 has narrower substrate specificity and acts on several orthoquinones, as well as isatin or the anticancer drug oracin. To further investigate structure-activity relationships between these enzymes we crystallized CBR3, performed substrate docking, site-directed mutagenesis and compared its kinetic features to CBR1. Despite high sequence similarities, the active sites differ in shape and surface properties. The data reveal that the differences in substrate specificity are largely due to a short segment of a substrate binding loop comprising critical residues Trp229/Pro230, Ala235/Asp236 as well as part of the active site formed by Met141/Gln142 in CBR1 and CBR3, respectively. The data suggest a minor role in xenobiotic metabolism for CBR3. This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0007113