Loading…
West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior
West Nile virus (WNV) has caused repeated large-scale human epidemics in North America since it was first detected in 1999 and is now the dominant vector-borne disease in this continent. Understanding the factors that determine the intensity of the spillover of this zoonotic pathogen from birds to h...
Saved in:
Published in: | PLoS biology 2006-04, Vol.4 (4), p.e82-e82 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c654t-d367a04211be5288c955fbe760b287340e9707bd9f63a2a46f0095333a1329e53 |
---|---|
cites | cdi_FETCH-LOGICAL-c654t-d367a04211be5288c955fbe760b287340e9707bd9f63a2a46f0095333a1329e53 |
container_end_page | e82 |
container_issue | 4 |
container_start_page | e82 |
container_title | PLoS biology |
container_volume | 4 |
creator | Kilpatrick, A Marm Kramer, Laura D Jones, Matthew J Marra, Peter P Daszak, Peter |
description | West Nile virus (WNV) has caused repeated large-scale human epidemics in North America since it was first detected in 1999 and is now the dominant vector-borne disease in this continent. Understanding the factors that determine the intensity of the spillover of this zoonotic pathogen from birds to humans (via mosquitoes) is a prerequisite for predicting and preventing human epidemics. We integrated mosquito feeding behavior with data on the population dynamics and WNV epidemiology of mosquitoes, birds, and humans. We show that Culex pipiens, the dominant enzootic (bird-to-bird) and bridge (bird-to-human) vector of WNV in urbanized areas in the northeast and north-central United States, shifted its feeding preferences from birds to humans by 7-fold during late summer and early fall, coinciding with the dispersal of its preferred host (American robins, Turdus migratorius) and the rise in human WNV infections. We also show that feeding shifts in Cx. tarsalis amplify human WNV epidemics in Colorado and California and occur during periods of robin dispersal and migration. Our results provide a direct explanation for the timing and intensity of human WNV epidemics. Shifts in feeding from competent avian hosts early in an epidemic to incompetent humans after mosquito infection prevalences are high result in synergistic effects that greatly amplify the number of human infections of this and other pathogens. Our results underscore the dramatic effects of vector behavior in driving the transmission of zoonotic pathogens to humans. |
doi_str_mv | 10.1371/journal.pbio.0040082 |
format | article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1292197128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_884c97b23e2d4d1db00f77269624a5d7</doaj_id><sourcerecordid>17171260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c654t-d367a04211be5288c955fbe760b287340e9707bd9f63a2a46f0095333a1329e53</originalsourceid><addsrcrecordid>eNqFkl1rFDEUhgdR7If-A9GA0Ltd8_1xI5TSaqG0N4o3QkgmZ3azzEy2ycxC_73T7qitFCQXCclz3pPz8lbVO4KXhCnyaZPG3Lt2ufUxLTHmGGv6ojokgouF0lq8fHQ-qI5K2WBMqaH6dXVAJDdcMHpY_fwBZUDXsQW0i3ksCLYxQBfrgmKPrlMe1ui0gxxrh1wGFHLcQY_8HSrr2AwPVJfK7RiHhBqAEPsV8rB2u5jym-pV49oCb-f9uPp-cf7t7Ovi6ubL5dnp1aKWgg-LwKRymFNCPAiqdW2EaDwoiT3VinEMRmHlg2kkc9Rx2WBsBGPMEUYNCHZcfdjrbttU7GxMsWSalhhFqJ6Iyz0RktvYbY6dy3c2uWgfLlJeWZeHWLdgtea1UZ4yoIEHEjzGjVJUGkm5E0FNWp_nbqPvINTQD9m1T0SfvvRxbVdpZwnTFBMyCZzMAjndjpP_toulhrZ1PaSxWKm04Jib_4JETYtKPIEf_wGfN4HvqTqnUjI0f_5MsL3P1O8qe58pO2dqKnv_eN6_RXOI2C_8ksjn</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292197128</pqid></control><display><type>article</type><title>West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Kilpatrick, A Marm ; Kramer, Laura D ; Jones, Matthew J ; Marra, Peter P ; Daszak, Peter</creator><contributor>Ostfeld, Rick</contributor><creatorcontrib>Kilpatrick, A Marm ; Kramer, Laura D ; Jones, Matthew J ; Marra, Peter P ; Daszak, Peter ; Ostfeld, Rick</creatorcontrib><description>West Nile virus (WNV) has caused repeated large-scale human epidemics in North America since it was first detected in 1999 and is now the dominant vector-borne disease in this continent. Understanding the factors that determine the intensity of the spillover of this zoonotic pathogen from birds to humans (via mosquitoes) is a prerequisite for predicting and preventing human epidemics. We integrated mosquito feeding behavior with data on the population dynamics and WNV epidemiology of mosquitoes, birds, and humans. We show that Culex pipiens, the dominant enzootic (bird-to-bird) and bridge (bird-to-human) vector of WNV in urbanized areas in the northeast and north-central United States, shifted its feeding preferences from birds to humans by 7-fold during late summer and early fall, coinciding with the dispersal of its preferred host (American robins, Turdus migratorius) and the rise in human WNV infections. We also show that feeding shifts in Cx. tarsalis amplify human WNV epidemics in Colorado and California and occur during periods of robin dispersal and migration. Our results provide a direct explanation for the timing and intensity of human WNV epidemics. Shifts in feeding from competent avian hosts early in an epidemic to incompetent humans after mosquito infection prevalences are high result in synergistic effects that greatly amplify the number of human infections of this and other pathogens. Our results underscore the dramatic effects of vector behavior in driving the transmission of zoonotic pathogens to humans.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.0040082</identifier><identifier>PMID: 16494532</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal Behavior ; Animals ; Aves ; Base Sequence ; Birds ; Birds - virology ; Culex pipiens ; Culicidae - physiology ; Culicidae - virology ; DNA, Viral - genetics ; Ecology ; Epidemics ; Epidemiology/Public Health ; Feeding Behavior - physiology ; Food Chain ; Homo (Human) ; Humans ; Infections ; Infectious Diseases ; Insects ; Mammals ; Mortality ; Mosquitoes ; North America - epidemiology ; Time Factors ; Turdus migratorius ; Urban Population ; Virology ; West Nile Fever - epidemiology ; West Nile virus ; West Nile virus - genetics ; West Nile virus - isolation & purification ; West Nile virus - physiology ; Zoology ; Zoonoses - epidemiology</subject><ispartof>PLoS biology, 2006-04, Vol.4 (4), p.e82-e82</ispartof><rights>2006 Kilpatrick et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P (2006) West Nile Virus Epidemics in North America Are Driven by Shifts in Mosquito Feeding Behavior. PLoS Biol 4(4): e82. doi:10.1371/journal.pbio.0040082</rights><rights>Copyright: © 2006 Kilpatrick et al. 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c654t-d367a04211be5288c955fbe760b287340e9707bd9f63a2a46f0095333a1329e53</citedby><cites>FETCH-LOGICAL-c654t-d367a04211be5288c955fbe760b287340e9707bd9f63a2a46f0095333a1329e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1292197128/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1292197128?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16494532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ostfeld, Rick</contributor><creatorcontrib>Kilpatrick, A Marm</creatorcontrib><creatorcontrib>Kramer, Laura D</creatorcontrib><creatorcontrib>Jones, Matthew J</creatorcontrib><creatorcontrib>Marra, Peter P</creatorcontrib><creatorcontrib>Daszak, Peter</creatorcontrib><title>West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>West Nile virus (WNV) has caused repeated large-scale human epidemics in North America since it was first detected in 1999 and is now the dominant vector-borne disease in this continent. Understanding the factors that determine the intensity of the spillover of this zoonotic pathogen from birds to humans (via mosquitoes) is a prerequisite for predicting and preventing human epidemics. We integrated mosquito feeding behavior with data on the population dynamics and WNV epidemiology of mosquitoes, birds, and humans. We show that Culex pipiens, the dominant enzootic (bird-to-bird) and bridge (bird-to-human) vector of WNV in urbanized areas in the northeast and north-central United States, shifted its feeding preferences from birds to humans by 7-fold during late summer and early fall, coinciding with the dispersal of its preferred host (American robins, Turdus migratorius) and the rise in human WNV infections. We also show that feeding shifts in Cx. tarsalis amplify human WNV epidemics in Colorado and California and occur during periods of robin dispersal and migration. Our results provide a direct explanation for the timing and intensity of human WNV epidemics. Shifts in feeding from competent avian hosts early in an epidemic to incompetent humans after mosquito infection prevalences are high result in synergistic effects that greatly amplify the number of human infections of this and other pathogens. Our results underscore the dramatic effects of vector behavior in driving the transmission of zoonotic pathogens to humans.</description><subject>Animal Behavior</subject><subject>Animals</subject><subject>Aves</subject><subject>Base Sequence</subject><subject>Birds</subject><subject>Birds - virology</subject><subject>Culex pipiens</subject><subject>Culicidae - physiology</subject><subject>Culicidae - virology</subject><subject>DNA, Viral - genetics</subject><subject>Ecology</subject><subject>Epidemics</subject><subject>Epidemiology/Public Health</subject><subject>Feeding Behavior - physiology</subject><subject>Food Chain</subject><subject>Homo (Human)</subject><subject>Humans</subject><subject>Infections</subject><subject>Infectious Diseases</subject><subject>Insects</subject><subject>Mammals</subject><subject>Mortality</subject><subject>Mosquitoes</subject><subject>North America - epidemiology</subject><subject>Time Factors</subject><subject>Turdus migratorius</subject><subject>Urban Population</subject><subject>Virology</subject><subject>West Nile Fever - epidemiology</subject><subject>West Nile virus</subject><subject>West Nile virus - genetics</subject><subject>West Nile virus - isolation & purification</subject><subject>West Nile virus - physiology</subject><subject>Zoology</subject><subject>Zoonoses - epidemiology</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkl1rFDEUhgdR7If-A9GA0Ltd8_1xI5TSaqG0N4o3QkgmZ3azzEy2ycxC_73T7qitFCQXCclz3pPz8lbVO4KXhCnyaZPG3Lt2ufUxLTHmGGv6ojokgouF0lq8fHQ-qI5K2WBMqaH6dXVAJDdcMHpY_fwBZUDXsQW0i3ksCLYxQBfrgmKPrlMe1ui0gxxrh1wGFHLcQY_8HSrr2AwPVJfK7RiHhBqAEPsV8rB2u5jym-pV49oCb-f9uPp-cf7t7Ovi6ubL5dnp1aKWgg-LwKRymFNCPAiqdW2EaDwoiT3VinEMRmHlg2kkc9Rx2WBsBGPMEUYNCHZcfdjrbttU7GxMsWSalhhFqJ6Iyz0RktvYbY6dy3c2uWgfLlJeWZeHWLdgtea1UZ4yoIEHEjzGjVJUGkm5E0FNWp_nbqPvINTQD9m1T0SfvvRxbVdpZwnTFBMyCZzMAjndjpP_toulhrZ1PaSxWKm04Jib_4JETYtKPIEf_wGfN4HvqTqnUjI0f_5MsL3P1O8qe58pO2dqKnv_eN6_RXOI2C_8ksjn</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Kilpatrick, A Marm</creator><creator>Kramer, Laura D</creator><creator>Jones, Matthew J</creator><creator>Marra, Peter P</creator><creator>Daszak, Peter</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7ST</scope><scope>7U6</scope><scope>7U9</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20060401</creationdate><title>West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior</title><author>Kilpatrick, A Marm ; Kramer, Laura D ; Jones, Matthew J ; Marra, Peter P ; Daszak, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c654t-d367a04211be5288c955fbe760b287340e9707bd9f63a2a46f0095333a1329e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animal Behavior</topic><topic>Animals</topic><topic>Aves</topic><topic>Base Sequence</topic><topic>Birds</topic><topic>Birds - virology</topic><topic>Culex pipiens</topic><topic>Culicidae - physiology</topic><topic>Culicidae - virology</topic><topic>DNA, Viral - genetics</topic><topic>Ecology</topic><topic>Epidemics</topic><topic>Epidemiology/Public Health</topic><topic>Feeding Behavior - physiology</topic><topic>Food Chain</topic><topic>Homo (Human)</topic><topic>Humans</topic><topic>Infections</topic><topic>Infectious Diseases</topic><topic>Insects</topic><topic>Mammals</topic><topic>Mortality</topic><topic>Mosquitoes</topic><topic>North America - epidemiology</topic><topic>Time Factors</topic><topic>Turdus migratorius</topic><topic>Urban Population</topic><topic>Virology</topic><topic>West Nile Fever - epidemiology</topic><topic>West Nile virus</topic><topic>West Nile virus - genetics</topic><topic>West Nile virus - isolation & purification</topic><topic>West Nile virus - physiology</topic><topic>Zoology</topic><topic>Zoonoses - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kilpatrick, A Marm</creatorcontrib><creatorcontrib>Kramer, Laura D</creatorcontrib><creatorcontrib>Jones, Matthew J</creatorcontrib><creatorcontrib>Marra, Peter P</creatorcontrib><creatorcontrib>Daszak, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kilpatrick, A Marm</au><au>Kramer, Laura D</au><au>Jones, Matthew J</au><au>Marra, Peter P</au><au>Daszak, Peter</au><au>Ostfeld, Rick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2006-04-01</date><risdate>2006</risdate><volume>4</volume><issue>4</issue><spage>e82</spage><epage>e82</epage><pages>e82-e82</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>West Nile virus (WNV) has caused repeated large-scale human epidemics in North America since it was first detected in 1999 and is now the dominant vector-borne disease in this continent. Understanding the factors that determine the intensity of the spillover of this zoonotic pathogen from birds to humans (via mosquitoes) is a prerequisite for predicting and preventing human epidemics. We integrated mosquito feeding behavior with data on the population dynamics and WNV epidemiology of mosquitoes, birds, and humans. We show that Culex pipiens, the dominant enzootic (bird-to-bird) and bridge (bird-to-human) vector of WNV in urbanized areas in the northeast and north-central United States, shifted its feeding preferences from birds to humans by 7-fold during late summer and early fall, coinciding with the dispersal of its preferred host (American robins, Turdus migratorius) and the rise in human WNV infections. We also show that feeding shifts in Cx. tarsalis amplify human WNV epidemics in Colorado and California and occur during periods of robin dispersal and migration. Our results provide a direct explanation for the timing and intensity of human WNV epidemics. Shifts in feeding from competent avian hosts early in an epidemic to incompetent humans after mosquito infection prevalences are high result in synergistic effects that greatly amplify the number of human infections of this and other pathogens. Our results underscore the dramatic effects of vector behavior in driving the transmission of zoonotic pathogens to humans.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>16494532</pmid><doi>10.1371/journal.pbio.0040082</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2006-04, Vol.4 (4), p.e82-e82 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_1292197128 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central |
subjects | Animal Behavior Animals Aves Base Sequence Birds Birds - virology Culex pipiens Culicidae - physiology Culicidae - virology DNA, Viral - genetics Ecology Epidemics Epidemiology/Public Health Feeding Behavior - physiology Food Chain Homo (Human) Humans Infections Infectious Diseases Insects Mammals Mortality Mosquitoes North America - epidemiology Time Factors Turdus migratorius Urban Population Virology West Nile Fever - epidemiology West Nile virus West Nile virus - genetics West Nile virus - isolation & purification West Nile virus - physiology Zoology Zoonoses - epidemiology |
title | West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=West%20Nile%20virus%20epidemics%20in%20North%20America%20are%20driven%20by%20shifts%20in%20mosquito%20feeding%20behavior&rft.jtitle=PLoS%20biology&rft.au=Kilpatrick,%20A%20Marm&rft.date=2006-04-01&rft.volume=4&rft.issue=4&rft.spage=e82&rft.epage=e82&rft.pages=e82-e82&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.0040082&rft_dat=%3Cproquest_plos_%3E17171260%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c654t-d367a04211be5288c955fbe760b287340e9707bd9f63a2a46f0095333a1329e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1292197128&rft_id=info:pmid/16494532&rfr_iscdi=true |