Loading…
Soybean GmPHD-Type Transcription Regulators Improve Stress Tolerance in Transgenic Arabidopsis Plants
Background: Soybean [Glycine max (L.) Merr.] is one of the most important crops for oil and protein resource. Improvement of stress tolerance will be beneficial for soybean seed production. Principal Findings: Six GmPHD genes encoding Alfin1-type PHD finger protein were identified and their expressi...
Saved in:
Published in: | PloS one 2009-09, Vol.4 (9), p.e7209-e7209 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c753t-7d064d0fe74ebe2855f77564ff51c881b09e17e1503f8f50a6af35bcf33a78773 |
---|---|
cites | cdi_FETCH-LOGICAL-c753t-7d064d0fe74ebe2855f77564ff51c881b09e17e1503f8f50a6af35bcf33a78773 |
container_end_page | e7209 |
container_issue | 9 |
container_start_page | e7209 |
container_title | PloS one |
container_volume | 4 |
creator | Wei, Wei Huang, Jian Hao, Yu-Jun Zou, Hong-Feng Wang, Hui-Wen Zhao, Jing-Yun Liu, Xue-Yi Zhang, Wan-Ke Ma, Biao Zhang, Jin-Song Chen, Shou-Yi |
description | Background: Soybean [Glycine max (L.) Merr.] is one of the most important crops for oil and protein resource. Improvement of stress tolerance will be beneficial for soybean seed production. Principal Findings: Six GmPHD genes encoding Alfin1-type PHD finger protein were identified and their expressions differentially responded to drought, salt, cold and ABA treatments. The six GmPHDs were nuclear proteins and showed ability to bind the cis-element “GTGGAG”. The N-terminal domain of GmPHD played a major role in DNA binding. Using a protoplast assay system, we find that GmPHD1 to GmPHD5 had transcriptional suppression activity whereas GmPHD6 did not have. In yeast assay, the GmPHD6 can form homodimer and heterodimer with the other GmPHDs except GmPHD2. The N-terminal plus the variable regions but not the PHD-finger is required for the dimerization. Transgenic Arabidopsis plants overexpressing the GmPHD2 showed salt tolerance when compared with the wild type plants. This tolerance was likely achieved by diminishing the oxidative stress through regulation of downstream genes. Significance: These results provide important clues for soybean stress tolerance through manipulation of PHD-type transcription regulator. |
doi_str_mv | 10.1371/journal.pone.0007209 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1292224430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472857467</galeid><doaj_id>oai_doaj_org_article_8407030ff0504f04a11934124613b5fb</doaj_id><sourcerecordid>A472857467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c753t-7d064d0fe74ebe2855f77564ff51c881b09e17e1503f8f50a6af35bcf33a78773</originalsourceid><addsrcrecordid>eNqNkl9v0zAUxSMEYmPwDRBEQgLx0HL9J3HyglQN2CpN2rR2vFpOcp26SuPMTib67XFpYC3iAfnBlv275_oenSh6TWBKmCCf1nZwrWqmnW1xCgCCQv4kOiU5o5OUAnt6cD6JXni_BkhYlqbPoxOSiyxPqTiNcGG3Bao2vtjcXH6ZLLcdxkunWl860_XGtvEt1kOjeut8PN90zj5gvOgdeh8vbYMBLTE27b6oxtaU8cypwlS288bHN41qe_8yeqZV4_HVuJ9Fd9--Ls8vJ1fXF_Pz2dWkFAnrJ6KClFegUXAskGZJooVIUq51QsosIwXkSASSBJjOdAIqVZolRakZUyITgp1Fb_e6XWO9HB3yktCcUso5g0DM90Rl1Vp2zmyU20qrjPx1YV0tletN2aDMOAhgoDUkwDVwRYKfnFCeElYkughan8duQ7HBqsS2d6o5Ej1-ac1K1vZBUsEFEBIEPowCzt4P6Hu5Mb7EJniGdvBSMA5p6LYb7N1f5L-Hm-6pWoX_m1bb0LYMq8KNKUNOtAn3My6CtYKnO9mPRwWB6fFHX6vBezlf3P4_e_39mH1_wK5QNf3K22bYBcofg3wPls5671D_cY-A3MX895xyF3M5xjyUvTl0_rFozPVjELSyUtXOeHm3oEAYkIymOaTsJ3wJAUk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292224430</pqid></control><display><type>article</type><title>Soybean GmPHD-Type Transcription Regulators Improve Stress Tolerance in Transgenic Arabidopsis Plants</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><creator>Wei, Wei ; Huang, Jian ; Hao, Yu-Jun ; Zou, Hong-Feng ; Wang, Hui-Wen ; Zhao, Jing-Yun ; Liu, Xue-Yi ; Zhang, Wan-Ke ; Ma, Biao ; Zhang, Jin-Song ; Chen, Shou-Yi</creator><contributor>El-Shemy, Hany A.</contributor><creatorcontrib>Wei, Wei ; Huang, Jian ; Hao, Yu-Jun ; Zou, Hong-Feng ; Wang, Hui-Wen ; Zhao, Jing-Yun ; Liu, Xue-Yi ; Zhang, Wan-Ke ; Ma, Biao ; Zhang, Jin-Song ; Chen, Shou-Yi ; El-Shemy, Hany A.</creatorcontrib><description>Background: Soybean [Glycine max (L.) Merr.] is one of the most important crops for oil and protein resource. Improvement of stress tolerance will be beneficial for soybean seed production. Principal Findings: Six GmPHD genes encoding Alfin1-type PHD finger protein were identified and their expressions differentially responded to drought, salt, cold and ABA treatments. The six GmPHDs were nuclear proteins and showed ability to bind the cis-element “GTGGAG”. The N-terminal domain of GmPHD played a major role in DNA binding. Using a protoplast assay system, we find that GmPHD1 to GmPHD5 had transcriptional suppression activity whereas GmPHD6 did not have. In yeast assay, the GmPHD6 can form homodimer and heterodimer with the other GmPHDs except GmPHD2. The N-terminal plus the variable regions but not the PHD-finger is required for the dimerization. Transgenic Arabidopsis plants overexpressing the GmPHD2 showed salt tolerance when compared with the wild type plants. This tolerance was likely achieved by diminishing the oxidative stress through regulation of downstream genes. Significance: These results provide important clues for soybean stress tolerance through manipulation of PHD-type transcription regulator.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0007209</identifier><identifier>PMID: 19789627</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abiotic stress ; Abscisic acid ; Amino Acid Sequence ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis thaliana ; Cloning ; Cloning, Molecular ; cold tolerance ; Deoxyribonucleic acid ; Developmental biology ; Dimerization ; DNA ; Drought ; drought tolerance ; Enzymes ; Fingers & toes ; Gene expression ; Gene Expression Profiling ; gene expression regulation ; Gene Expression Regulation, Plant ; Gene regulation ; gene transfer ; Genes ; Genetic engineering ; Genomics ; Glycine max ; Glycine max - genetics ; GmPHD gene ; Kinases ; Laboratories ; Metabolism ; Molecular Sequence Data ; Oryza ; Oxidative stress ; Plant Biology/Agricultural Biotechnology ; Plant Biology/Plant Biochemistry and Physiology ; Plant Biology/Plant-Environment Interactions ; Plants, Genetically Modified ; Protein Binding ; Protein Structure, Tertiary ; Proteins ; Protoplasts - metabolism ; salt stress ; Salt tolerance ; Salts ; Sequence Homology, Amino Acid ; Signal transduction ; Soybean Proteins - genetics ; Soybeans ; Stress response ; stress tolerance ; Stress, Physiological ; Transcription ; Transcription (Genetics) ; Transcription factors ; Transcription Factors - genetics ; Transgenic plants ; Trends ; Wei-Wei (1957- ) ; Yeast</subject><ispartof>PloS one, 2009-09, Vol.4 (9), p.e7209-e7209</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>2009 Wei et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Wei et al. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c753t-7d064d0fe74ebe2855f77564ff51c881b09e17e1503f8f50a6af35bcf33a78773</citedby><cites>FETCH-LOGICAL-c753t-7d064d0fe74ebe2855f77564ff51c881b09e17e1503f8f50a6af35bcf33a78773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1292224430/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1292224430?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19789627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>El-Shemy, Hany A.</contributor><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Huang, Jian</creatorcontrib><creatorcontrib>Hao, Yu-Jun</creatorcontrib><creatorcontrib>Zou, Hong-Feng</creatorcontrib><creatorcontrib>Wang, Hui-Wen</creatorcontrib><creatorcontrib>Zhao, Jing-Yun</creatorcontrib><creatorcontrib>Liu, Xue-Yi</creatorcontrib><creatorcontrib>Zhang, Wan-Ke</creatorcontrib><creatorcontrib>Ma, Biao</creatorcontrib><creatorcontrib>Zhang, Jin-Song</creatorcontrib><creatorcontrib>Chen, Shou-Yi</creatorcontrib><title>Soybean GmPHD-Type Transcription Regulators Improve Stress Tolerance in Transgenic Arabidopsis Plants</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Background: Soybean [Glycine max (L.) Merr.] is one of the most important crops for oil and protein resource. Improvement of stress tolerance will be beneficial for soybean seed production. Principal Findings: Six GmPHD genes encoding Alfin1-type PHD finger protein were identified and their expressions differentially responded to drought, salt, cold and ABA treatments. The six GmPHDs were nuclear proteins and showed ability to bind the cis-element “GTGGAG”. The N-terminal domain of GmPHD played a major role in DNA binding. Using a protoplast assay system, we find that GmPHD1 to GmPHD5 had transcriptional suppression activity whereas GmPHD6 did not have. In yeast assay, the GmPHD6 can form homodimer and heterodimer with the other GmPHDs except GmPHD2. The N-terminal plus the variable regions but not the PHD-finger is required for the dimerization. Transgenic Arabidopsis plants overexpressing the GmPHD2 showed salt tolerance when compared with the wild type plants. This tolerance was likely achieved by diminishing the oxidative stress through regulation of downstream genes. Significance: These results provide important clues for soybean stress tolerance through manipulation of PHD-type transcription regulator.</description><subject>Abiotic stress</subject><subject>Abscisic acid</subject><subject>Amino Acid Sequence</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Cloning</subject><subject>Cloning, Molecular</subject><subject>cold tolerance</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental biology</subject><subject>Dimerization</subject><subject>DNA</subject><subject>Drought</subject><subject>drought tolerance</subject><subject>Enzymes</subject><subject>Fingers & toes</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene regulation</subject><subject>gene transfer</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genomics</subject><subject>Glycine max</subject><subject>Glycine max - genetics</subject><subject>GmPHD gene</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Metabolism</subject><subject>Molecular Sequence Data</subject><subject>Oryza</subject><subject>Oxidative stress</subject><subject>Plant Biology/Agricultural Biotechnology</subject><subject>Plant Biology/Plant Biochemistry and Physiology</subject><subject>Plant Biology/Plant-Environment Interactions</subject><subject>Plants, Genetically Modified</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Protoplasts - metabolism</subject><subject>salt stress</subject><subject>Salt tolerance</subject><subject>Salts</subject><subject>Sequence Homology, Amino Acid</subject><subject>Signal transduction</subject><subject>Soybean Proteins - genetics</subject><subject>Soybeans</subject><subject>Stress response</subject><subject>stress tolerance</subject><subject>Stress, Physiological</subject><subject>Transcription</subject><subject>Transcription (Genetics)</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transgenic plants</subject><subject>Trends</subject><subject>Wei-Wei (1957- )</subject><subject>Yeast</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl9v0zAUxSMEYmPwDRBEQgLx0HL9J3HyglQN2CpN2rR2vFpOcp26SuPMTib67XFpYC3iAfnBlv275_oenSh6TWBKmCCf1nZwrWqmnW1xCgCCQv4kOiU5o5OUAnt6cD6JXni_BkhYlqbPoxOSiyxPqTiNcGG3Bao2vtjcXH6ZLLcdxkunWl860_XGtvEt1kOjeut8PN90zj5gvOgdeh8vbYMBLTE27b6oxtaU8cypwlS288bHN41qe_8yeqZV4_HVuJ9Fd9--Ls8vJ1fXF_Pz2dWkFAnrJ6KClFegUXAskGZJooVIUq51QsosIwXkSASSBJjOdAIqVZolRakZUyITgp1Fb_e6XWO9HB3yktCcUso5g0DM90Rl1Vp2zmyU20qrjPx1YV0tletN2aDMOAhgoDUkwDVwRYKfnFCeElYkughan8duQ7HBqsS2d6o5Ej1-ac1K1vZBUsEFEBIEPowCzt4P6Hu5Mb7EJniGdvBSMA5p6LYb7N1f5L-Hm-6pWoX_m1bb0LYMq8KNKUNOtAn3My6CtYKnO9mPRwWB6fFHX6vBezlf3P4_e_39mH1_wK5QNf3K22bYBcofg3wPls5671D_cY-A3MX895xyF3M5xjyUvTl0_rFozPVjELSyUtXOeHm3oEAYkIymOaTsJ3wJAUk</recordid><startdate>20090930</startdate><enddate>20090930</enddate><creator>Wei, Wei</creator><creator>Huang, Jian</creator><creator>Hao, Yu-Jun</creator><creator>Zou, Hong-Feng</creator><creator>Wang, Hui-Wen</creator><creator>Zhao, Jing-Yun</creator><creator>Liu, Xue-Yi</creator><creator>Zhang, Wan-Ke</creator><creator>Ma, Biao</creator><creator>Zhang, Jin-Song</creator><creator>Chen, Shou-Yi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20090930</creationdate><title>Soybean GmPHD-Type Transcription Regulators Improve Stress Tolerance in Transgenic Arabidopsis Plants</title><author>Wei, Wei ; Huang, Jian ; Hao, Yu-Jun ; Zou, Hong-Feng ; Wang, Hui-Wen ; Zhao, Jing-Yun ; Liu, Xue-Yi ; Zhang, Wan-Ke ; Ma, Biao ; Zhang, Jin-Song ; Chen, Shou-Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c753t-7d064d0fe74ebe2855f77564ff51c881b09e17e1503f8f50a6af35bcf33a78773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Abiotic stress</topic><topic>Abscisic acid</topic><topic>Amino Acid Sequence</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Cloning</topic><topic>Cloning, Molecular</topic><topic>cold tolerance</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental biology</topic><topic>Dimerization</topic><topic>DNA</topic><topic>Drought</topic><topic>drought tolerance</topic><topic>Enzymes</topic><topic>Fingers & toes</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene regulation</topic><topic>gene transfer</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genomics</topic><topic>Glycine max</topic><topic>Glycine max - genetics</topic><topic>GmPHD gene</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Metabolism</topic><topic>Molecular Sequence Data</topic><topic>Oryza</topic><topic>Oxidative stress</topic><topic>Plant Biology/Agricultural Biotechnology</topic><topic>Plant Biology/Plant Biochemistry and Physiology</topic><topic>Plant Biology/Plant-Environment Interactions</topic><topic>Plants, Genetically Modified</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Protoplasts - metabolism</topic><topic>salt stress</topic><topic>Salt tolerance</topic><topic>Salts</topic><topic>Sequence Homology, Amino Acid</topic><topic>Signal transduction</topic><topic>Soybean Proteins - genetics</topic><topic>Soybeans</topic><topic>Stress response</topic><topic>stress tolerance</topic><topic>Stress, Physiological</topic><topic>Transcription</topic><topic>Transcription (Genetics)</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transgenic plants</topic><topic>Trends</topic><topic>Wei-Wei (1957- )</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Huang, Jian</creatorcontrib><creatorcontrib>Hao, Yu-Jun</creatorcontrib><creatorcontrib>Zou, Hong-Feng</creatorcontrib><creatorcontrib>Wang, Hui-Wen</creatorcontrib><creatorcontrib>Zhao, Jing-Yun</creatorcontrib><creatorcontrib>Liu, Xue-Yi</creatorcontrib><creatorcontrib>Zhang, Wan-Ke</creatorcontrib><creatorcontrib>Ma, Biao</creatorcontrib><creatorcontrib>Zhang, Jin-Song</creatorcontrib><creatorcontrib>Chen, Shou-Yi</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Wei</au><au>Huang, Jian</au><au>Hao, Yu-Jun</au><au>Zou, Hong-Feng</au><au>Wang, Hui-Wen</au><au>Zhao, Jing-Yun</au><au>Liu, Xue-Yi</au><au>Zhang, Wan-Ke</au><au>Ma, Biao</au><au>Zhang, Jin-Song</au><au>Chen, Shou-Yi</au><au>El-Shemy, Hany A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soybean GmPHD-Type Transcription Regulators Improve Stress Tolerance in Transgenic Arabidopsis Plants</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2009-09-30</date><risdate>2009</risdate><volume>4</volume><issue>9</issue><spage>e7209</spage><epage>e7209</epage><pages>e7209-e7209</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Background: Soybean [Glycine max (L.) Merr.] is one of the most important crops for oil and protein resource. Improvement of stress tolerance will be beneficial for soybean seed production. Principal Findings: Six GmPHD genes encoding Alfin1-type PHD finger protein were identified and their expressions differentially responded to drought, salt, cold and ABA treatments. The six GmPHDs were nuclear proteins and showed ability to bind the cis-element “GTGGAG”. The N-terminal domain of GmPHD played a major role in DNA binding. Using a protoplast assay system, we find that GmPHD1 to GmPHD5 had transcriptional suppression activity whereas GmPHD6 did not have. In yeast assay, the GmPHD6 can form homodimer and heterodimer with the other GmPHDs except GmPHD2. The N-terminal plus the variable regions but not the PHD-finger is required for the dimerization. Transgenic Arabidopsis plants overexpressing the GmPHD2 showed salt tolerance when compared with the wild type plants. This tolerance was likely achieved by diminishing the oxidative stress through regulation of downstream genes. Significance: These results provide important clues for soybean stress tolerance through manipulation of PHD-type transcription regulator.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19789627</pmid><doi>10.1371/journal.pone.0007209</doi><tpages>e7209</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2009-09, Vol.4 (9), p.e7209-e7209 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1292224430 |
source | ProQuest - Publicly Available Content Database; PubMed Central |
subjects | Abiotic stress Abscisic acid Amino Acid Sequence Arabidopsis Arabidopsis - genetics Arabidopsis thaliana Cloning Cloning, Molecular cold tolerance Deoxyribonucleic acid Developmental biology Dimerization DNA Drought drought tolerance Enzymes Fingers & toes Gene expression Gene Expression Profiling gene expression regulation Gene Expression Regulation, Plant Gene regulation gene transfer Genes Genetic engineering Genomics Glycine max Glycine max - genetics GmPHD gene Kinases Laboratories Metabolism Molecular Sequence Data Oryza Oxidative stress Plant Biology/Agricultural Biotechnology Plant Biology/Plant Biochemistry and Physiology Plant Biology/Plant-Environment Interactions Plants, Genetically Modified Protein Binding Protein Structure, Tertiary Proteins Protoplasts - metabolism salt stress Salt tolerance Salts Sequence Homology, Amino Acid Signal transduction Soybean Proteins - genetics Soybeans Stress response stress tolerance Stress, Physiological Transcription Transcription (Genetics) Transcription factors Transcription Factors - genetics Transgenic plants Trends Wei-Wei (1957- ) Yeast |
title | Soybean GmPHD-Type Transcription Regulators Improve Stress Tolerance in Transgenic Arabidopsis Plants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A32%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soybean%20GmPHD-Type%20Transcription%20Regulators%20Improve%20Stress%20Tolerance%20in%20Transgenic%20Arabidopsis%20Plants&rft.jtitle=PloS%20one&rft.au=Wei,%20Wei&rft.date=2009-09-30&rft.volume=4&rft.issue=9&rft.spage=e7209&rft.epage=e7209&rft.pages=e7209-e7209&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0007209&rft_dat=%3Cgale_plos_%3EA472857467%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c753t-7d064d0fe74ebe2855f77564ff51c881b09e17e1503f8f50a6af35bcf33a78773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1292224430&rft_id=info:pmid/19789627&rft_galeid=A472857467&rfr_iscdi=true |