Loading…
Altered actin centripetal retrograde flow in physically restricted immunological synapses
Antigen recognition by T cells involves large scale spatial reorganization of numerous receptor, adhesion, and costimulatory proteins within the T cell-antigen presenting cell (APC) junction. The resulting patterns can be distinctive, and are collectively known as the immunological synapse. Dynamica...
Saved in:
Published in: | PloS one 2010-07, Vol.5 (7), p.e11878-e11878 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c816t-49289cc15b76f6b104672c366f34eff065643cca91681a5382f3e96bb80bbc1f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c816t-49289cc15b76f6b104672c366f34eff065643cca91681a5382f3e96bb80bbc1f3 |
container_end_page | e11878 |
container_issue | 7 |
container_start_page | e11878 |
container_title | PloS one |
container_volume | 5 |
creator | Yu, Cheng-han Wu, Hung-jen Kaizuka, Yoshihisa Vale, Ronald D Groves, Jay T |
description | Antigen recognition by T cells involves large scale spatial reorganization of numerous receptor, adhesion, and costimulatory proteins within the T cell-antigen presenting cell (APC) junction. The resulting patterns can be distinctive, and are collectively known as the immunological synapse. Dynamical assembly of cytoskeletal network is believed to play an important role in driving these assembly processes. In one experimental strategy, the APC is replaced with a synthetic supported membrane. An advantage of this configuration is that solid structures patterned onto the underlying substrate can guide immunological synapse assembly into altered patterns. Here, we use mobile anti-CD3epsilon on the spatial-partitioned supported bilayer to ligate and trigger T cell receptor (TCR) in live Jurkat T cells. Simultaneous tracking of both TCR clusters and GFP-actin speckles reveals their dynamic association and individual flow patterns. Actin retrograde flow directs the inward transport of TCR clusters. Flow-based particle tracking algorithms allow us to investigate the velocity distribution of actin flow field across the whole synapse, and centripetal velocity of actin flow decreases as it moves toward the center of synapse. Localized actin flow analysis reveals that, while there is no influence on actin motion from substrate patterns directly, velocity differences of actin are observed over physically trapped TCR clusters. Actin flow regains its velocity immediately after passing through confined TCR clusters. These observations are consistent with a dynamic and dissipative coupling between TCR clusters and viscoelastic actin network. |
doi_str_mv | 10.1371/journal.pone.0011878 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1292434671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473881165</galeid><doaj_id>oai_doaj_org_article_98716cd7d86b4bc8bbf30bcd3d1d4b3e</doaj_id><sourcerecordid>A473881165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c816t-49289cc15b76f6b104672c366f34eff065643cca91681a5382f3e96bb80bbc1f3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0SLguLFjPlo0_RGGBY_BhYW_AKvQpKmnQyZpJuk6vx7053uMpW9WHKRkPO8bzhvOFn2HIIlxBV8v3WDt9wse2fVEgAIaUUfZKewxmhBEMAPj84n2ZMQtgCUmBLyODtBgKRDjU6zXysTlVdNzmXUNpfKRq97FbnJvYredZ43Km-N-5Oncr_ZBy25MftUDYmUMUn1bjdYZ1w3lvKwt7wPKjzNHrXcBPVs2s-yH58-fj__sri4_Lw-X10sJIUkLooa0VpKWIqKtERAUJAKSUxIiwvVtoCUpMBS8hoSCnlqALVY1UQICoSQsMVn2cuDb29cYFMqgUFUowInM5iI9YFoHN-y3usd93vmuGbXF853jPuopVGsphUksqkaSkQhJBWixUDIBjewKQRWyevD9Nogdqq5zoubmem8YvWGde43QzVEmFTJ4NXBwIWoWZA6KrmRzlolI4MEVQUcobfTK95dDSlpttNBKmO4VW4IrCqLssSovAdZ0BpTDMYUXv9H3p3VRHU8xaFt61IXcvRkq6LClEJIykQt76DSatROp2ZUq9P9TPBuJkhMVH9jx4cQ2Prb1_uzlz_n7JsjdqO4iZvgzBC1s2EOFgdQeheCV-3tl0HAxnm6SYON88SmeUqyF8fffSu6GSD8D1hvGzs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292434671</pqid></control><display><type>article</type><title>Altered actin centripetal retrograde flow in physically restricted immunological synapses</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Yu, Cheng-han ; Wu, Hung-jen ; Kaizuka, Yoshihisa ; Vale, Ronald D ; Groves, Jay T</creator><contributor>Unutmaz, Derya</contributor><creatorcontrib>Yu, Cheng-han ; Wu, Hung-jen ; Kaizuka, Yoshihisa ; Vale, Ronald D ; Groves, Jay T ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) ; Unutmaz, Derya</creatorcontrib><description>Antigen recognition by T cells involves large scale spatial reorganization of numerous receptor, adhesion, and costimulatory proteins within the T cell-antigen presenting cell (APC) junction. The resulting patterns can be distinctive, and are collectively known as the immunological synapse. Dynamical assembly of cytoskeletal network is believed to play an important role in driving these assembly processes. In one experimental strategy, the APC is replaced with a synthetic supported membrane. An advantage of this configuration is that solid structures patterned onto the underlying substrate can guide immunological synapse assembly into altered patterns. Here, we use mobile anti-CD3epsilon on the spatial-partitioned supported bilayer to ligate and trigger T cell receptor (TCR) in live Jurkat T cells. Simultaneous tracking of both TCR clusters and GFP-actin speckles reveals their dynamic association and individual flow patterns. Actin retrograde flow directs the inward transport of TCR clusters. Flow-based particle tracking algorithms allow us to investigate the velocity distribution of actin flow field across the whole synapse, and centripetal velocity of actin flow decreases as it moves toward the center of synapse. Localized actin flow analysis reveals that, while there is no influence on actin motion from substrate patterns directly, velocity differences of actin are observed over physically trapped TCR clusters. Actin flow regains its velocity immediately after passing through confined TCR clusters. These observations are consistent with a dynamic and dissipative coupling between TCR clusters and viscoelastic actin network.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0011878</identifier><identifier>PMID: 20686692</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actin ; Actins - metabolism ; Algorithms ; Antigen-presenting cells ; Antigens ; Assembly ; BASIC BIOLOGICAL SCIENCES ; Biophysics ; Biophysics/Experimental Biophysical Methods ; Biophysics/Macromolecular Assemblies and Machines ; Cell adhesion & migration ; Cell Biology/Cytoskeleton ; Clusters ; Cytoskeleton ; Flow (Dynamics) ; Flow pattern ; Glass substrates ; Humans ; Immunological synapses ; Immunological Synapses - metabolism ; Immunology ; Jurkat Cells - metabolism ; Lymphocytes ; Lymphocytes T ; Materials science ; Membranes ; Microscopy ; Microscopy, Confocal ; Muscle proteins ; Particle tracking ; Proteins ; Receptors, Antigen, T-Cell - metabolism ; Science & Technology - Other Topics ; Signal transduction ; Spatial distribution ; Synapses ; T cell receptors ; T cells ; T-cell receptor ; Velocity ; Velocity distribution ; Viscoelasticity</subject><ispartof>PloS one, 2010-07, Vol.5 (7), p.e11878-e11878</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Yu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Yu et al. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c816t-49289cc15b76f6b104672c366f34eff065643cca91681a5382f3e96bb80bbc1f3</citedby><cites>FETCH-LOGICAL-c816t-49289cc15b76f6b104672c366f34eff065643cca91681a5382f3e96bb80bbc1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1292434671/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1292434671?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25735,27906,27907,36994,36995,44572,53773,53775,74876</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20686692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1627417$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Unutmaz, Derya</contributor><creatorcontrib>Yu, Cheng-han</creatorcontrib><creatorcontrib>Wu, Hung-jen</creatorcontrib><creatorcontrib>Kaizuka, Yoshihisa</creatorcontrib><creatorcontrib>Vale, Ronald D</creatorcontrib><creatorcontrib>Groves, Jay T</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Altered actin centripetal retrograde flow in physically restricted immunological synapses</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Antigen recognition by T cells involves large scale spatial reorganization of numerous receptor, adhesion, and costimulatory proteins within the T cell-antigen presenting cell (APC) junction. The resulting patterns can be distinctive, and are collectively known as the immunological synapse. Dynamical assembly of cytoskeletal network is believed to play an important role in driving these assembly processes. In one experimental strategy, the APC is replaced with a synthetic supported membrane. An advantage of this configuration is that solid structures patterned onto the underlying substrate can guide immunological synapse assembly into altered patterns. Here, we use mobile anti-CD3epsilon on the spatial-partitioned supported bilayer to ligate and trigger T cell receptor (TCR) in live Jurkat T cells. Simultaneous tracking of both TCR clusters and GFP-actin speckles reveals their dynamic association and individual flow patterns. Actin retrograde flow directs the inward transport of TCR clusters. Flow-based particle tracking algorithms allow us to investigate the velocity distribution of actin flow field across the whole synapse, and centripetal velocity of actin flow decreases as it moves toward the center of synapse. Localized actin flow analysis reveals that, while there is no influence on actin motion from substrate patterns directly, velocity differences of actin are observed over physically trapped TCR clusters. Actin flow regains its velocity immediately after passing through confined TCR clusters. These observations are consistent with a dynamic and dissipative coupling between TCR clusters and viscoelastic actin network.</description><subject>Actin</subject><subject>Actins - metabolism</subject><subject>Algorithms</subject><subject>Antigen-presenting cells</subject><subject>Antigens</subject><subject>Assembly</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biophysics</subject><subject>Biophysics/Experimental Biophysical Methods</subject><subject>Biophysics/Macromolecular Assemblies and Machines</subject><subject>Cell adhesion & migration</subject><subject>Cell Biology/Cytoskeleton</subject><subject>Clusters</subject><subject>Cytoskeleton</subject><subject>Flow (Dynamics)</subject><subject>Flow pattern</subject><subject>Glass substrates</subject><subject>Humans</subject><subject>Immunological synapses</subject><subject>Immunological Synapses - metabolism</subject><subject>Immunology</subject><subject>Jurkat Cells - metabolism</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Materials science</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Microscopy, Confocal</subject><subject>Muscle proteins</subject><subject>Particle tracking</subject><subject>Proteins</subject><subject>Receptors, Antigen, T-Cell - metabolism</subject><subject>Science & Technology - Other Topics</subject><subject>Signal transduction</subject><subject>Spatial distribution</subject><subject>Synapses</subject><subject>T cell receptors</subject><subject>T cells</subject><subject>T-cell receptor</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Viscoelasticity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0SLguLFjPlo0_RGGBY_BhYW_AKvQpKmnQyZpJuk6vx7053uMpW9WHKRkPO8bzhvOFn2HIIlxBV8v3WDt9wse2fVEgAIaUUfZKewxmhBEMAPj84n2ZMQtgCUmBLyODtBgKRDjU6zXysTlVdNzmXUNpfKRq97FbnJvYredZ43Km-N-5Oncr_ZBy25MftUDYmUMUn1bjdYZ1w3lvKwt7wPKjzNHrXcBPVs2s-yH58-fj__sri4_Lw-X10sJIUkLooa0VpKWIqKtERAUJAKSUxIiwvVtoCUpMBS8hoSCnlqALVY1UQICoSQsMVn2cuDb29cYFMqgUFUowInM5iI9YFoHN-y3usd93vmuGbXF853jPuopVGsphUksqkaSkQhJBWixUDIBjewKQRWyevD9Nogdqq5zoubmem8YvWGde43QzVEmFTJ4NXBwIWoWZA6KrmRzlolI4MEVQUcobfTK95dDSlpttNBKmO4VW4IrCqLssSovAdZ0BpTDMYUXv9H3p3VRHU8xaFt61IXcvRkq6LClEJIykQt76DSatROp2ZUq9P9TPBuJkhMVH9jx4cQ2Prb1_uzlz_n7JsjdqO4iZvgzBC1s2EOFgdQeheCV-3tl0HAxnm6SYON88SmeUqyF8fffSu6GSD8D1hvGzs</recordid><startdate>20100729</startdate><enddate>20100729</enddate><creator>Yu, Cheng-han</creator><creator>Wu, Hung-jen</creator><creator>Kaizuka, Yoshihisa</creator><creator>Vale, Ronald D</creator><creator>Groves, Jay T</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100729</creationdate><title>Altered actin centripetal retrograde flow in physically restricted immunological synapses</title><author>Yu, Cheng-han ; Wu, Hung-jen ; Kaizuka, Yoshihisa ; Vale, Ronald D ; Groves, Jay T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c816t-49289cc15b76f6b104672c366f34eff065643cca91681a5382f3e96bb80bbc1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Actin</topic><topic>Actins - metabolism</topic><topic>Algorithms</topic><topic>Antigen-presenting cells</topic><topic>Antigens</topic><topic>Assembly</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biophysics</topic><topic>Biophysics/Experimental Biophysical Methods</topic><topic>Biophysics/Macromolecular Assemblies and Machines</topic><topic>Cell adhesion & migration</topic><topic>Cell Biology/Cytoskeleton</topic><topic>Clusters</topic><topic>Cytoskeleton</topic><topic>Flow (Dynamics)</topic><topic>Flow pattern</topic><topic>Glass substrates</topic><topic>Humans</topic><topic>Immunological synapses</topic><topic>Immunological Synapses - metabolism</topic><topic>Immunology</topic><topic>Jurkat Cells - metabolism</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Materials science</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Microscopy, Confocal</topic><topic>Muscle proteins</topic><topic>Particle tracking</topic><topic>Proteins</topic><topic>Receptors, Antigen, T-Cell - metabolism</topic><topic>Science & Technology - Other Topics</topic><topic>Signal transduction</topic><topic>Spatial distribution</topic><topic>Synapses</topic><topic>T cell receptors</topic><topic>T cells</topic><topic>T-cell receptor</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Cheng-han</creatorcontrib><creatorcontrib>Wu, Hung-jen</creatorcontrib><creatorcontrib>Kaizuka, Yoshihisa</creatorcontrib><creatorcontrib>Vale, Ronald D</creatorcontrib><creatorcontrib>Groves, Jay T</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (ProQuest Medical & Health Databases)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Cheng-han</au><au>Wu, Hung-jen</au><au>Kaizuka, Yoshihisa</au><au>Vale, Ronald D</au><au>Groves, Jay T</au><au>Unutmaz, Derya</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Altered actin centripetal retrograde flow in physically restricted immunological synapses</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-07-29</date><risdate>2010</risdate><volume>5</volume><issue>7</issue><spage>e11878</spage><epage>e11878</epage><pages>e11878-e11878</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Antigen recognition by T cells involves large scale spatial reorganization of numerous receptor, adhesion, and costimulatory proteins within the T cell-antigen presenting cell (APC) junction. The resulting patterns can be distinctive, and are collectively known as the immunological synapse. Dynamical assembly of cytoskeletal network is believed to play an important role in driving these assembly processes. In one experimental strategy, the APC is replaced with a synthetic supported membrane. An advantage of this configuration is that solid structures patterned onto the underlying substrate can guide immunological synapse assembly into altered patterns. Here, we use mobile anti-CD3epsilon on the spatial-partitioned supported bilayer to ligate and trigger T cell receptor (TCR) in live Jurkat T cells. Simultaneous tracking of both TCR clusters and GFP-actin speckles reveals their dynamic association and individual flow patterns. Actin retrograde flow directs the inward transport of TCR clusters. Flow-based particle tracking algorithms allow us to investigate the velocity distribution of actin flow field across the whole synapse, and centripetal velocity of actin flow decreases as it moves toward the center of synapse. Localized actin flow analysis reveals that, while there is no influence on actin motion from substrate patterns directly, velocity differences of actin are observed over physically trapped TCR clusters. Actin flow regains its velocity immediately after passing through confined TCR clusters. These observations are consistent with a dynamic and dissipative coupling between TCR clusters and viscoelastic actin network.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20686692</pmid><doi>10.1371/journal.pone.0011878</doi><tpages>e11878</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2010-07, Vol.5 (7), p.e11878-e11878 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1292434671 |
source | Publicly Available Content Database; PubMed Central |
subjects | Actin Actins - metabolism Algorithms Antigen-presenting cells Antigens Assembly BASIC BIOLOGICAL SCIENCES Biophysics Biophysics/Experimental Biophysical Methods Biophysics/Macromolecular Assemblies and Machines Cell adhesion & migration Cell Biology/Cytoskeleton Clusters Cytoskeleton Flow (Dynamics) Flow pattern Glass substrates Humans Immunological synapses Immunological Synapses - metabolism Immunology Jurkat Cells - metabolism Lymphocytes Lymphocytes T Materials science Membranes Microscopy Microscopy, Confocal Muscle proteins Particle tracking Proteins Receptors, Antigen, T-Cell - metabolism Science & Technology - Other Topics Signal transduction Spatial distribution Synapses T cell receptors T cells T-cell receptor Velocity Velocity distribution Viscoelasticity |
title | Altered actin centripetal retrograde flow in physically restricted immunological synapses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Altered%20actin%20centripetal%20retrograde%20flow%20in%20physically%20restricted%20immunological%20synapses&rft.jtitle=PloS%20one&rft.au=Yu,%20Cheng-han&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2010-07-29&rft.volume=5&rft.issue=7&rft.spage=e11878&rft.epage=e11878&rft.pages=e11878-e11878&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0011878&rft_dat=%3Cgale_plos_%3EA473881165%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c816t-49289cc15b76f6b104672c366f34eff065643cca91681a5382f3e96bb80bbc1f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1292434671&rft_id=info:pmid/20686692&rft_galeid=A473881165&rfr_iscdi=true |