Loading…

Altered actin centripetal retrograde flow in physically restricted immunological synapses

Antigen recognition by T cells involves large scale spatial reorganization of numerous receptor, adhesion, and costimulatory proteins within the T cell-antigen presenting cell (APC) junction. The resulting patterns can be distinctive, and are collectively known as the immunological synapse. Dynamica...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2010-07, Vol.5 (7), p.e11878-e11878
Main Authors: Yu, Cheng-han, Wu, Hung-jen, Kaizuka, Yoshihisa, Vale, Ronald D, Groves, Jay T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c816t-49289cc15b76f6b104672c366f34eff065643cca91681a5382f3e96bb80bbc1f3
cites cdi_FETCH-LOGICAL-c816t-49289cc15b76f6b104672c366f34eff065643cca91681a5382f3e96bb80bbc1f3
container_end_page e11878
container_issue 7
container_start_page e11878
container_title PloS one
container_volume 5
creator Yu, Cheng-han
Wu, Hung-jen
Kaizuka, Yoshihisa
Vale, Ronald D
Groves, Jay T
description Antigen recognition by T cells involves large scale spatial reorganization of numerous receptor, adhesion, and costimulatory proteins within the T cell-antigen presenting cell (APC) junction. The resulting patterns can be distinctive, and are collectively known as the immunological synapse. Dynamical assembly of cytoskeletal network is believed to play an important role in driving these assembly processes. In one experimental strategy, the APC is replaced with a synthetic supported membrane. An advantage of this configuration is that solid structures patterned onto the underlying substrate can guide immunological synapse assembly into altered patterns. Here, we use mobile anti-CD3epsilon on the spatial-partitioned supported bilayer to ligate and trigger T cell receptor (TCR) in live Jurkat T cells. Simultaneous tracking of both TCR clusters and GFP-actin speckles reveals their dynamic association and individual flow patterns. Actin retrograde flow directs the inward transport of TCR clusters. Flow-based particle tracking algorithms allow us to investigate the velocity distribution of actin flow field across the whole synapse, and centripetal velocity of actin flow decreases as it moves toward the center of synapse. Localized actin flow analysis reveals that, while there is no influence on actin motion from substrate patterns directly, velocity differences of actin are observed over physically trapped TCR clusters. Actin flow regains its velocity immediately after passing through confined TCR clusters. These observations are consistent with a dynamic and dissipative coupling between TCR clusters and viscoelastic actin network.
doi_str_mv 10.1371/journal.pone.0011878
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1292434671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473881165</galeid><doaj_id>oai_doaj_org_article_98716cd7d86b4bc8bbf30bcd3d1d4b3e</doaj_id><sourcerecordid>A473881165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c816t-49289cc15b76f6b104672c366f34eff065643cca91681a5382f3e96bb80bbc1f3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0SLguLFjPlo0_RGGBY_BhYW_AKvQpKmnQyZpJuk6vx7053uMpW9WHKRkPO8bzhvOFn2HIIlxBV8v3WDt9wse2fVEgAIaUUfZKewxmhBEMAPj84n2ZMQtgCUmBLyODtBgKRDjU6zXysTlVdNzmXUNpfKRq97FbnJvYredZ43Km-N-5Oncr_ZBy25MftUDYmUMUn1bjdYZ1w3lvKwt7wPKjzNHrXcBPVs2s-yH58-fj__sri4_Lw-X10sJIUkLooa0VpKWIqKtERAUJAKSUxIiwvVtoCUpMBS8hoSCnlqALVY1UQICoSQsMVn2cuDb29cYFMqgUFUowInM5iI9YFoHN-y3usd93vmuGbXF853jPuopVGsphUksqkaSkQhJBWixUDIBjewKQRWyevD9Nogdqq5zoubmem8YvWGde43QzVEmFTJ4NXBwIWoWZA6KrmRzlolI4MEVQUcobfTK95dDSlpttNBKmO4VW4IrCqLssSovAdZ0BpTDMYUXv9H3p3VRHU8xaFt61IXcvRkq6LClEJIykQt76DSatROp2ZUq9P9TPBuJkhMVH9jx4cQ2Prb1_uzlz_n7JsjdqO4iZvgzBC1s2EOFgdQeheCV-3tl0HAxnm6SYON88SmeUqyF8fffSu6GSD8D1hvGzs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292434671</pqid></control><display><type>article</type><title>Altered actin centripetal retrograde flow in physically restricted immunological synapses</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Yu, Cheng-han ; Wu, Hung-jen ; Kaizuka, Yoshihisa ; Vale, Ronald D ; Groves, Jay T</creator><contributor>Unutmaz, Derya</contributor><creatorcontrib>Yu, Cheng-han ; Wu, Hung-jen ; Kaizuka, Yoshihisa ; Vale, Ronald D ; Groves, Jay T ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) ; Unutmaz, Derya</creatorcontrib><description>Antigen recognition by T cells involves large scale spatial reorganization of numerous receptor, adhesion, and costimulatory proteins within the T cell-antigen presenting cell (APC) junction. The resulting patterns can be distinctive, and are collectively known as the immunological synapse. Dynamical assembly of cytoskeletal network is believed to play an important role in driving these assembly processes. In one experimental strategy, the APC is replaced with a synthetic supported membrane. An advantage of this configuration is that solid structures patterned onto the underlying substrate can guide immunological synapse assembly into altered patterns. Here, we use mobile anti-CD3epsilon on the spatial-partitioned supported bilayer to ligate and trigger T cell receptor (TCR) in live Jurkat T cells. Simultaneous tracking of both TCR clusters and GFP-actin speckles reveals their dynamic association and individual flow patterns. Actin retrograde flow directs the inward transport of TCR clusters. Flow-based particle tracking algorithms allow us to investigate the velocity distribution of actin flow field across the whole synapse, and centripetal velocity of actin flow decreases as it moves toward the center of synapse. Localized actin flow analysis reveals that, while there is no influence on actin motion from substrate patterns directly, velocity differences of actin are observed over physically trapped TCR clusters. Actin flow regains its velocity immediately after passing through confined TCR clusters. These observations are consistent with a dynamic and dissipative coupling between TCR clusters and viscoelastic actin network.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0011878</identifier><identifier>PMID: 20686692</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actin ; Actins - metabolism ; Algorithms ; Antigen-presenting cells ; Antigens ; Assembly ; BASIC BIOLOGICAL SCIENCES ; Biophysics ; Biophysics/Experimental Biophysical Methods ; Biophysics/Macromolecular Assemblies and Machines ; Cell adhesion &amp; migration ; Cell Biology/Cytoskeleton ; Clusters ; Cytoskeleton ; Flow (Dynamics) ; Flow pattern ; Glass substrates ; Humans ; Immunological synapses ; Immunological Synapses - metabolism ; Immunology ; Jurkat Cells - metabolism ; Lymphocytes ; Lymphocytes T ; Materials science ; Membranes ; Microscopy ; Microscopy, Confocal ; Muscle proteins ; Particle tracking ; Proteins ; Receptors, Antigen, T-Cell - metabolism ; Science &amp; Technology - Other Topics ; Signal transduction ; Spatial distribution ; Synapses ; T cell receptors ; T cells ; T-cell receptor ; Velocity ; Velocity distribution ; Viscoelasticity</subject><ispartof>PloS one, 2010-07, Vol.5 (7), p.e11878-e11878</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Yu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Yu et al. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c816t-49289cc15b76f6b104672c366f34eff065643cca91681a5382f3e96bb80bbc1f3</citedby><cites>FETCH-LOGICAL-c816t-49289cc15b76f6b104672c366f34eff065643cca91681a5382f3e96bb80bbc1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1292434671/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1292434671?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25735,27906,27907,36994,36995,44572,53773,53775,74876</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20686692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1627417$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Unutmaz, Derya</contributor><creatorcontrib>Yu, Cheng-han</creatorcontrib><creatorcontrib>Wu, Hung-jen</creatorcontrib><creatorcontrib>Kaizuka, Yoshihisa</creatorcontrib><creatorcontrib>Vale, Ronald D</creatorcontrib><creatorcontrib>Groves, Jay T</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Altered actin centripetal retrograde flow in physically restricted immunological synapses</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Antigen recognition by T cells involves large scale spatial reorganization of numerous receptor, adhesion, and costimulatory proteins within the T cell-antigen presenting cell (APC) junction. The resulting patterns can be distinctive, and are collectively known as the immunological synapse. Dynamical assembly of cytoskeletal network is believed to play an important role in driving these assembly processes. In one experimental strategy, the APC is replaced with a synthetic supported membrane. An advantage of this configuration is that solid structures patterned onto the underlying substrate can guide immunological synapse assembly into altered patterns. Here, we use mobile anti-CD3epsilon on the spatial-partitioned supported bilayer to ligate and trigger T cell receptor (TCR) in live Jurkat T cells. Simultaneous tracking of both TCR clusters and GFP-actin speckles reveals their dynamic association and individual flow patterns. Actin retrograde flow directs the inward transport of TCR clusters. Flow-based particle tracking algorithms allow us to investigate the velocity distribution of actin flow field across the whole synapse, and centripetal velocity of actin flow decreases as it moves toward the center of synapse. Localized actin flow analysis reveals that, while there is no influence on actin motion from substrate patterns directly, velocity differences of actin are observed over physically trapped TCR clusters. Actin flow regains its velocity immediately after passing through confined TCR clusters. These observations are consistent with a dynamic and dissipative coupling between TCR clusters and viscoelastic actin network.</description><subject>Actin</subject><subject>Actins - metabolism</subject><subject>Algorithms</subject><subject>Antigen-presenting cells</subject><subject>Antigens</subject><subject>Assembly</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biophysics</subject><subject>Biophysics/Experimental Biophysical Methods</subject><subject>Biophysics/Macromolecular Assemblies and Machines</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Biology/Cytoskeleton</subject><subject>Clusters</subject><subject>Cytoskeleton</subject><subject>Flow (Dynamics)</subject><subject>Flow pattern</subject><subject>Glass substrates</subject><subject>Humans</subject><subject>Immunological synapses</subject><subject>Immunological Synapses - metabolism</subject><subject>Immunology</subject><subject>Jurkat Cells - metabolism</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Materials science</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Microscopy, Confocal</subject><subject>Muscle proteins</subject><subject>Particle tracking</subject><subject>Proteins</subject><subject>Receptors, Antigen, T-Cell - metabolism</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Signal transduction</subject><subject>Spatial distribution</subject><subject>Synapses</subject><subject>T cell receptors</subject><subject>T cells</subject><subject>T-cell receptor</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Viscoelasticity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0SLguLFjPlo0_RGGBY_BhYW_AKvQpKmnQyZpJuk6vx7053uMpW9WHKRkPO8bzhvOFn2HIIlxBV8v3WDt9wse2fVEgAIaUUfZKewxmhBEMAPj84n2ZMQtgCUmBLyODtBgKRDjU6zXysTlVdNzmXUNpfKRq97FbnJvYredZ43Km-N-5Oncr_ZBy25MftUDYmUMUn1bjdYZ1w3lvKwt7wPKjzNHrXcBPVs2s-yH58-fj__sri4_Lw-X10sJIUkLooa0VpKWIqKtERAUJAKSUxIiwvVtoCUpMBS8hoSCnlqALVY1UQICoSQsMVn2cuDb29cYFMqgUFUowInM5iI9YFoHN-y3usd93vmuGbXF853jPuopVGsphUksqkaSkQhJBWixUDIBjewKQRWyevD9Nogdqq5zoubmem8YvWGde43QzVEmFTJ4NXBwIWoWZA6KrmRzlolI4MEVQUcobfTK95dDSlpttNBKmO4VW4IrCqLssSovAdZ0BpTDMYUXv9H3p3VRHU8xaFt61IXcvRkq6LClEJIykQt76DSatROp2ZUq9P9TPBuJkhMVH9jx4cQ2Prb1_uzlz_n7JsjdqO4iZvgzBC1s2EOFgdQeheCV-3tl0HAxnm6SYON88SmeUqyF8fffSu6GSD8D1hvGzs</recordid><startdate>20100729</startdate><enddate>20100729</enddate><creator>Yu, Cheng-han</creator><creator>Wu, Hung-jen</creator><creator>Kaizuka, Yoshihisa</creator><creator>Vale, Ronald D</creator><creator>Groves, Jay T</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100729</creationdate><title>Altered actin centripetal retrograde flow in physically restricted immunological synapses</title><author>Yu, Cheng-han ; Wu, Hung-jen ; Kaizuka, Yoshihisa ; Vale, Ronald D ; Groves, Jay T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c816t-49289cc15b76f6b104672c366f34eff065643cca91681a5382f3e96bb80bbc1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Actin</topic><topic>Actins - metabolism</topic><topic>Algorithms</topic><topic>Antigen-presenting cells</topic><topic>Antigens</topic><topic>Assembly</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biophysics</topic><topic>Biophysics/Experimental Biophysical Methods</topic><topic>Biophysics/Macromolecular Assemblies and Machines</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Biology/Cytoskeleton</topic><topic>Clusters</topic><topic>Cytoskeleton</topic><topic>Flow (Dynamics)</topic><topic>Flow pattern</topic><topic>Glass substrates</topic><topic>Humans</topic><topic>Immunological synapses</topic><topic>Immunological Synapses - metabolism</topic><topic>Immunology</topic><topic>Jurkat Cells - metabolism</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Materials science</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Microscopy, Confocal</topic><topic>Muscle proteins</topic><topic>Particle tracking</topic><topic>Proteins</topic><topic>Receptors, Antigen, T-Cell - metabolism</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Signal transduction</topic><topic>Spatial distribution</topic><topic>Synapses</topic><topic>T cell receptors</topic><topic>T cells</topic><topic>T-cell receptor</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Cheng-han</creatorcontrib><creatorcontrib>Wu, Hung-jen</creatorcontrib><creatorcontrib>Kaizuka, Yoshihisa</creatorcontrib><creatorcontrib>Vale, Ronald D</creatorcontrib><creatorcontrib>Groves, Jay T</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (ProQuest Medical &amp; Health Databases)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Cheng-han</au><au>Wu, Hung-jen</au><au>Kaizuka, Yoshihisa</au><au>Vale, Ronald D</au><au>Groves, Jay T</au><au>Unutmaz, Derya</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Altered actin centripetal retrograde flow in physically restricted immunological synapses</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-07-29</date><risdate>2010</risdate><volume>5</volume><issue>7</issue><spage>e11878</spage><epage>e11878</epage><pages>e11878-e11878</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Antigen recognition by T cells involves large scale spatial reorganization of numerous receptor, adhesion, and costimulatory proteins within the T cell-antigen presenting cell (APC) junction. The resulting patterns can be distinctive, and are collectively known as the immunological synapse. Dynamical assembly of cytoskeletal network is believed to play an important role in driving these assembly processes. In one experimental strategy, the APC is replaced with a synthetic supported membrane. An advantage of this configuration is that solid structures patterned onto the underlying substrate can guide immunological synapse assembly into altered patterns. Here, we use mobile anti-CD3epsilon on the spatial-partitioned supported bilayer to ligate and trigger T cell receptor (TCR) in live Jurkat T cells. Simultaneous tracking of both TCR clusters and GFP-actin speckles reveals their dynamic association and individual flow patterns. Actin retrograde flow directs the inward transport of TCR clusters. Flow-based particle tracking algorithms allow us to investigate the velocity distribution of actin flow field across the whole synapse, and centripetal velocity of actin flow decreases as it moves toward the center of synapse. Localized actin flow analysis reveals that, while there is no influence on actin motion from substrate patterns directly, velocity differences of actin are observed over physically trapped TCR clusters. Actin flow regains its velocity immediately after passing through confined TCR clusters. These observations are consistent with a dynamic and dissipative coupling between TCR clusters and viscoelastic actin network.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20686692</pmid><doi>10.1371/journal.pone.0011878</doi><tpages>e11878</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2010-07, Vol.5 (7), p.e11878-e11878
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1292434671
source Publicly Available Content Database; PubMed Central
subjects Actin
Actins - metabolism
Algorithms
Antigen-presenting cells
Antigens
Assembly
BASIC BIOLOGICAL SCIENCES
Biophysics
Biophysics/Experimental Biophysical Methods
Biophysics/Macromolecular Assemblies and Machines
Cell adhesion & migration
Cell Biology/Cytoskeleton
Clusters
Cytoskeleton
Flow (Dynamics)
Flow pattern
Glass substrates
Humans
Immunological synapses
Immunological Synapses - metabolism
Immunology
Jurkat Cells - metabolism
Lymphocytes
Lymphocytes T
Materials science
Membranes
Microscopy
Microscopy, Confocal
Muscle proteins
Particle tracking
Proteins
Receptors, Antigen, T-Cell - metabolism
Science & Technology - Other Topics
Signal transduction
Spatial distribution
Synapses
T cell receptors
T cells
T-cell receptor
Velocity
Velocity distribution
Viscoelasticity
title Altered actin centripetal retrograde flow in physically restricted immunological synapses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Altered%20actin%20centripetal%20retrograde%20flow%20in%20physically%20restricted%20immunological%20synapses&rft.jtitle=PloS%20one&rft.au=Yu,%20Cheng-han&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2010-07-29&rft.volume=5&rft.issue=7&rft.spage=e11878&rft.epage=e11878&rft.pages=e11878-e11878&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0011878&rft_dat=%3Cgale_plos_%3EA473881165%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c816t-49289cc15b76f6b104672c366f34eff065643cca91681a5382f3e96bb80bbc1f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1292434671&rft_id=info:pmid/20686692&rft_galeid=A473881165&rfr_iscdi=true