Loading…

Dominant cone-rod dystrophy: a mouse model generated by gene targeting of the GCAP1/Guca1a gene

Cone dystrophy 3 (COD3) is a severe dominantly inherited retinal degeneration caused by missense mutations in GUCA1A, the gene encoding Guanylate Cyclase Activating Protein 1 (GCAP1). The role of GCAP1 in controlling cyclic nucleotide levels in photoreceptors has largely been elucidated using knock-...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2011-03, Vol.6 (3), p.e18089
Main Authors: Buch, Prateek K, Mihelec, Marija, Cottrill, Phillippa, Wilkie, Susan E, Pearson, Rachael A, Duran, Yanai, West, Emma L, Michaelides, Michel, Ali, Robin R, Hunt, David M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cone dystrophy 3 (COD3) is a severe dominantly inherited retinal degeneration caused by missense mutations in GUCA1A, the gene encoding Guanylate Cyclase Activating Protein 1 (GCAP1). The role of GCAP1 in controlling cyclic nucleotide levels in photoreceptors has largely been elucidated using knock-out mice, but the disease pathology in these mice cannot be extrapolated directly to COD3 as this involves altered, rather than loss of, GCAP1 function. Therefore, in order to evaluate the pathology of this dominant disorder, we have introduced a point mutation into the murine Guca1a gene that causes an E155G amino acid substitution; this is one of the disease-causing mutations found in COD3 patients. Disease progression in this novel mouse model of cone dystrophy was determined by a variety of techniques including electroretinography (ERG), retinal histology, immunohistochemistry and measurement of cGMP levels. It was established that although retinal development was normal up to 3 months of age, there was a subsequent progressive decline in retinal function, with a far greater alteration in cone than rod responses, associated with a corresponding loss of photoreceptors. In addition, we have demonstrated that accumulation of cyclic GMP precedes the observed retinal degeneration and is likely to contribute to the disease mechanism. Importantly, this knock-in mutant mouse has many features in common with the human disease, thereby making it an excellent model to further probe disease pathogenesis and investigate therapeutic interventions.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0018089