Loading…
Suboptimal porcine endogenous retrovirus infection in non-human primate cells: implication for preclinical xenotransplantation
Porcine endogenous retrovirus (PERV) poses a potential risk of zoonotic infection in xenotransplantation. Preclinical transplantation trials using non-human primates (NHP) as recipients of porcine xenografts present the opportunity to assess the zoonosis risk in vivo. However, PERV poorly infects NH...
Saved in:
Published in: | PloS one 2010-10, Vol.5 (10), p.e13203-e13203 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c789t-7ea0d4bfcde9ff1edbe357871f8c968a5a2521786e3781f509e0470063a7d1493 |
---|---|
cites | cdi_FETCH-LOGICAL-c789t-7ea0d4bfcde9ff1edbe357871f8c968a5a2521786e3781f509e0470063a7d1493 |
container_end_page | e13203 |
container_issue | 10 |
container_start_page | e13203 |
container_title | PloS one |
container_volume | 5 |
creator | Mattiuzzo, Giada Takeuchi, Yasuhiro |
description | Porcine endogenous retrovirus (PERV) poses a potential risk of zoonotic infection in xenotransplantation. Preclinical transplantation trials using non-human primates (NHP) as recipients of porcine xenografts present the opportunity to assess the zoonosis risk in vivo. However, PERV poorly infects NHP cells for unclear reasons and therefore NHP may represent a suboptimal animal model to assess the risk of PERV zoonoses. We investigated the mechanism responsible for the low efficiency of PERV-A infection in NHP cells.
Two steps, cell entry and exit, were inefficient for the replication of high-titer, human-tropic A/C recombinant PERV. A restriction factor, tetherin, is likely to be responsible for the block to matured virion release, supported by the correlation between the levels of inhibition and tetherin expression. In rhesus macaque, cynomolgus macaque and baboon the main receptor for PERV entry, PERV-A receptor 1 (PAR-1), was found to be genetically deficient: PAR-1 genes in these species encode serine at amino acid 109 in place of the leucine in human PAR-1. This genetic defect inevitably impacts in vivo sensitivity to PERV infection of these species. In contrast, African green monkey (AGM) PAR-1 is functional, but PERV infection is still poor. Although the mechanism is unclear, tunicamycin treatment, which removes N-glycosylated sugar chains, increases PERV infection, suggesting a possible role for the glycosylation of the receptors.
Since cynomolgus macaque and baboon, species often used in pig-to-NHP xenotransplantation experiments, have a defective PAR-1, they hardly represent an ideal animal model to assess the risk of PERV transmission in xenotransplantation. Alternatively, NHP species, like AGM, whose both PARs are functional may represent a better model than baboon and cynomolgus macaque for PERV zoonosis in vivo studies. |
doi_str_mv | 10.1371/journal.pone.0013203 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1292444363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473855663</galeid><doaj_id>oai_doaj_org_article_d4d8bf6419454a5ca12dfcc90eadbd19</doaj_id><sourcerecordid>A473855663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c789t-7ea0d4bfcde9ff1edbe357871f8c968a5a2521786e3781f509e0470063a7d1493</originalsourceid><addsrcrecordid>eNqNk99rFDEQxxdRbK3-B6ILguLDnckmu0l8EErxx0GhYNXXkEtm71JyyZrslvri3272blvupKDsww6Tz3zDzDdTFM8xmmPC8LurMESv3LwLHuYIYVIh8qA4xoJUsybHD_fio-JJSlcI1YQ3zePiqEKCCiSq4-L35bAMXW83ypVdiNp6KMGbsAIfhlRG6GO4tjGH1regext8jkof_Gw9bJQvu5hreyg1OJfel3bTOavVlmtDzMegnfU55cqbrNlH5VPnlO-3zNPiUatcgmfT_6T4_unjt7Mvs_OLz4uz0_OZZlz0MwYKGbpstQHRthjMEkjNOMMt16LhqlZVXWHGGyCM47ZGAhBlCDVEMYOpICfFy51u50KS0-iSxJWoKKWkIZlY7AgT1JXcdhV_yaCs3CZCXEkVe6sdSEMNX7YNxYLWVNVa4cq0WgsEyiwNHm_7MN02LDdgNPjctjsQPTzxdi1X4VpWoka85lngzSQQw88BUi83No0TVh6yLVJgjCljAv-TZDXnhFdNk8lXf5H3j2GiVip3mj0fHdOjpjyljPC6brbU_B4qfwY2VucH2dqcPyh4e1CQmR5u-pUaUpKLy6__z178OGRf77FrUK5fp-CG8W2lQ5DuQB1DShHaOzcwkuM-3U5Djvskp33KZS_2nbwrul0g8geaRR5V</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292444363</pqid></control><display><type>article</type><title>Suboptimal porcine endogenous retrovirus infection in non-human primate cells: implication for preclinical xenotransplantation</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Mattiuzzo, Giada ; Takeuchi, Yasuhiro</creator><contributor>Fooks, Anthony R.</contributor><creatorcontrib>Mattiuzzo, Giada ; Takeuchi, Yasuhiro ; Fooks, Anthony R.</creatorcontrib><description>Porcine endogenous retrovirus (PERV) poses a potential risk of zoonotic infection in xenotransplantation. Preclinical transplantation trials using non-human primates (NHP) as recipients of porcine xenografts present the opportunity to assess the zoonosis risk in vivo. However, PERV poorly infects NHP cells for unclear reasons and therefore NHP may represent a suboptimal animal model to assess the risk of PERV zoonoses. We investigated the mechanism responsible for the low efficiency of PERV-A infection in NHP cells.
Two steps, cell entry and exit, were inefficient for the replication of high-titer, human-tropic A/C recombinant PERV. A restriction factor, tetherin, is likely to be responsible for the block to matured virion release, supported by the correlation between the levels of inhibition and tetherin expression. In rhesus macaque, cynomolgus macaque and baboon the main receptor for PERV entry, PERV-A receptor 1 (PAR-1), was found to be genetically deficient: PAR-1 genes in these species encode serine at amino acid 109 in place of the leucine in human PAR-1. This genetic defect inevitably impacts in vivo sensitivity to PERV infection of these species. In contrast, African green monkey (AGM) PAR-1 is functional, but PERV infection is still poor. Although the mechanism is unclear, tunicamycin treatment, which removes N-glycosylated sugar chains, increases PERV infection, suggesting a possible role for the glycosylation of the receptors.
Since cynomolgus macaque and baboon, species often used in pig-to-NHP xenotransplantation experiments, have a defective PAR-1, they hardly represent an ideal animal model to assess the risk of PERV transmission in xenotransplantation. Alternatively, NHP species, like AGM, whose both PARs are functional may represent a better model than baboon and cynomolgus macaque for PERV zoonosis in vivo studies.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0013203</identifier><identifier>PMID: 20949092</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Amino acids ; Analysis ; Animal experimentation ; Animals ; Cells, Cultured ; Cercopithecus aethiops ; Cynomolgus ; Deoxyribonucleic acid ; DNA ; Endogenous Retroviruses - pathogenicity ; Genomes ; Glycosylation ; Health aspects ; Health risks ; In vivo methods and tests ; Infection ; Infections ; Leucine ; Macaca mulatta ; Medical research ; Molecular Sequence Data ; Monkeys & apes ; Papio ; Porcine endogenous retrovirus ; Primates ; Proteinase-activated receptor 1 ; Receptors ; Receptors, Virus - chemistry ; Receptors, Virus - physiology ; Retroviridae Infections - therapy ; Retroviridae Infections - virology ; Risk assessment ; Sequence Homology, Amino Acid ; Serine ; Species ; Sugar ; Swine ; Transplantation ; Transplantation, Heterologous ; Tunicamycin ; Tunicamycin - pharmacology ; Virions ; Virology ; Virology/Animal Models of Infection ; Virology/Host Invasion and Cell Entry ; Viruses ; Xenografts ; Xenotransplantation ; Zoonoses</subject><ispartof>PloS one, 2010-10, Vol.5 (10), p.e13203-e13203</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Mattiuzzo, Takeuchi. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Mattiuzzo, Takeuchi. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c789t-7ea0d4bfcde9ff1edbe357871f8c968a5a2521786e3781f509e0470063a7d1493</citedby><cites>FETCH-LOGICAL-c789t-7ea0d4bfcde9ff1edbe357871f8c968a5a2521786e3781f509e0470063a7d1493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1292444363/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1292444363?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20949092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Fooks, Anthony R.</contributor><creatorcontrib>Mattiuzzo, Giada</creatorcontrib><creatorcontrib>Takeuchi, Yasuhiro</creatorcontrib><title>Suboptimal porcine endogenous retrovirus infection in non-human primate cells: implication for preclinical xenotransplantation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Porcine endogenous retrovirus (PERV) poses a potential risk of zoonotic infection in xenotransplantation. Preclinical transplantation trials using non-human primates (NHP) as recipients of porcine xenografts present the opportunity to assess the zoonosis risk in vivo. However, PERV poorly infects NHP cells for unclear reasons and therefore NHP may represent a suboptimal animal model to assess the risk of PERV zoonoses. We investigated the mechanism responsible for the low efficiency of PERV-A infection in NHP cells.
Two steps, cell entry and exit, were inefficient for the replication of high-titer, human-tropic A/C recombinant PERV. A restriction factor, tetherin, is likely to be responsible for the block to matured virion release, supported by the correlation between the levels of inhibition and tetherin expression. In rhesus macaque, cynomolgus macaque and baboon the main receptor for PERV entry, PERV-A receptor 1 (PAR-1), was found to be genetically deficient: PAR-1 genes in these species encode serine at amino acid 109 in place of the leucine in human PAR-1. This genetic defect inevitably impacts in vivo sensitivity to PERV infection of these species. In contrast, African green monkey (AGM) PAR-1 is functional, but PERV infection is still poor. Although the mechanism is unclear, tunicamycin treatment, which removes N-glycosylated sugar chains, increases PERV infection, suggesting a possible role for the glycosylation of the receptors.
Since cynomolgus macaque and baboon, species often used in pig-to-NHP xenotransplantation experiments, have a defective PAR-1, they hardly represent an ideal animal model to assess the risk of PERV transmission in xenotransplantation. Alternatively, NHP species, like AGM, whose both PARs are functional may represent a better model than baboon and cynomolgus macaque for PERV zoonosis in vivo studies.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Animal experimentation</subject><subject>Animals</subject><subject>Cells, Cultured</subject><subject>Cercopithecus aethiops</subject><subject>Cynomolgus</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Endogenous Retroviruses - pathogenicity</subject><subject>Genomes</subject><subject>Glycosylation</subject><subject>Health aspects</subject><subject>Health risks</subject><subject>In vivo methods and tests</subject><subject>Infection</subject><subject>Infections</subject><subject>Leucine</subject><subject>Macaca mulatta</subject><subject>Medical research</subject><subject>Molecular Sequence Data</subject><subject>Monkeys & apes</subject><subject>Papio</subject><subject>Porcine endogenous retrovirus</subject><subject>Primates</subject><subject>Proteinase-activated receptor 1</subject><subject>Receptors</subject><subject>Receptors, Virus - chemistry</subject><subject>Receptors, Virus - physiology</subject><subject>Retroviridae Infections - therapy</subject><subject>Retroviridae Infections - virology</subject><subject>Risk assessment</subject><subject>Sequence Homology, Amino Acid</subject><subject>Serine</subject><subject>Species</subject><subject>Sugar</subject><subject>Swine</subject><subject>Transplantation</subject><subject>Transplantation, Heterologous</subject><subject>Tunicamycin</subject><subject>Tunicamycin - pharmacology</subject><subject>Virions</subject><subject>Virology</subject><subject>Virology/Animal Models of Infection</subject><subject>Virology/Host Invasion and Cell Entry</subject><subject>Viruses</subject><subject>Xenografts</subject><subject>Xenotransplantation</subject><subject>Zoonoses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99rFDEQxxdRbK3-B6ILguLDnckmu0l8EErxx0GhYNXXkEtm71JyyZrslvri3272blvupKDsww6Tz3zDzDdTFM8xmmPC8LurMESv3LwLHuYIYVIh8qA4xoJUsybHD_fio-JJSlcI1YQ3zePiqEKCCiSq4-L35bAMXW83ypVdiNp6KMGbsAIfhlRG6GO4tjGH1regext8jkof_Gw9bJQvu5hreyg1OJfel3bTOavVlmtDzMegnfU55cqbrNlH5VPnlO-3zNPiUatcgmfT_6T4_unjt7Mvs_OLz4uz0_OZZlz0MwYKGbpstQHRthjMEkjNOMMt16LhqlZVXWHGGyCM47ZGAhBlCDVEMYOpICfFy51u50KS0-iSxJWoKKWkIZlY7AgT1JXcdhV_yaCs3CZCXEkVe6sdSEMNX7YNxYLWVNVa4cq0WgsEyiwNHm_7MN02LDdgNPjctjsQPTzxdi1X4VpWoka85lngzSQQw88BUi83No0TVh6yLVJgjCljAv-TZDXnhFdNk8lXf5H3j2GiVip3mj0fHdOjpjyljPC6brbU_B4qfwY2VucH2dqcPyh4e1CQmR5u-pUaUpKLy6__z178OGRf77FrUK5fp-CG8W2lQ5DuQB1DShHaOzcwkuM-3U5Djvskp33KZS_2nbwrul0g8geaRR5V</recordid><startdate>20101006</startdate><enddate>20101006</enddate><creator>Mattiuzzo, Giada</creator><creator>Takeuchi, Yasuhiro</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20101006</creationdate><title>Suboptimal porcine endogenous retrovirus infection in non-human primate cells: implication for preclinical xenotransplantation</title><author>Mattiuzzo, Giada ; Takeuchi, Yasuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c789t-7ea0d4bfcde9ff1edbe357871f8c968a5a2521786e3781f509e0470063a7d1493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Animal experimentation</topic><topic>Animals</topic><topic>Cells, Cultured</topic><topic>Cercopithecus aethiops</topic><topic>Cynomolgus</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Endogenous Retroviruses - pathogenicity</topic><topic>Genomes</topic><topic>Glycosylation</topic><topic>Health aspects</topic><topic>Health risks</topic><topic>In vivo methods and tests</topic><topic>Infection</topic><topic>Infections</topic><topic>Leucine</topic><topic>Macaca mulatta</topic><topic>Medical research</topic><topic>Molecular Sequence Data</topic><topic>Monkeys & apes</topic><topic>Papio</topic><topic>Porcine endogenous retrovirus</topic><topic>Primates</topic><topic>Proteinase-activated receptor 1</topic><topic>Receptors</topic><topic>Receptors, Virus - chemistry</topic><topic>Receptors, Virus - physiology</topic><topic>Retroviridae Infections - therapy</topic><topic>Retroviridae Infections - virology</topic><topic>Risk assessment</topic><topic>Sequence Homology, Amino Acid</topic><topic>Serine</topic><topic>Species</topic><topic>Sugar</topic><topic>Swine</topic><topic>Transplantation</topic><topic>Transplantation, Heterologous</topic><topic>Tunicamycin</topic><topic>Tunicamycin - pharmacology</topic><topic>Virions</topic><topic>Virology</topic><topic>Virology/Animal Models of Infection</topic><topic>Virology/Host Invasion and Cell Entry</topic><topic>Viruses</topic><topic>Xenografts</topic><topic>Xenotransplantation</topic><topic>Zoonoses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mattiuzzo, Giada</creatorcontrib><creatorcontrib>Takeuchi, Yasuhiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mattiuzzo, Giada</au><au>Takeuchi, Yasuhiro</au><au>Fooks, Anthony R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suboptimal porcine endogenous retrovirus infection in non-human primate cells: implication for preclinical xenotransplantation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-10-06</date><risdate>2010</risdate><volume>5</volume><issue>10</issue><spage>e13203</spage><epage>e13203</epage><pages>e13203-e13203</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Porcine endogenous retrovirus (PERV) poses a potential risk of zoonotic infection in xenotransplantation. Preclinical transplantation trials using non-human primates (NHP) as recipients of porcine xenografts present the opportunity to assess the zoonosis risk in vivo. However, PERV poorly infects NHP cells for unclear reasons and therefore NHP may represent a suboptimal animal model to assess the risk of PERV zoonoses. We investigated the mechanism responsible for the low efficiency of PERV-A infection in NHP cells.
Two steps, cell entry and exit, were inefficient for the replication of high-titer, human-tropic A/C recombinant PERV. A restriction factor, tetherin, is likely to be responsible for the block to matured virion release, supported by the correlation between the levels of inhibition and tetherin expression. In rhesus macaque, cynomolgus macaque and baboon the main receptor for PERV entry, PERV-A receptor 1 (PAR-1), was found to be genetically deficient: PAR-1 genes in these species encode serine at amino acid 109 in place of the leucine in human PAR-1. This genetic defect inevitably impacts in vivo sensitivity to PERV infection of these species. In contrast, African green monkey (AGM) PAR-1 is functional, but PERV infection is still poor. Although the mechanism is unclear, tunicamycin treatment, which removes N-glycosylated sugar chains, increases PERV infection, suggesting a possible role for the glycosylation of the receptors.
Since cynomolgus macaque and baboon, species often used in pig-to-NHP xenotransplantation experiments, have a defective PAR-1, they hardly represent an ideal animal model to assess the risk of PERV transmission in xenotransplantation. Alternatively, NHP species, like AGM, whose both PARs are functional may represent a better model than baboon and cynomolgus macaque for PERV zoonosis in vivo studies.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20949092</pmid><doi>10.1371/journal.pone.0013203</doi><tpages>e13203</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2010-10, Vol.5 (10), p.e13203-e13203 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1292444363 |
source | Publicly Available Content Database; PubMed Central |
subjects | Amino Acid Sequence Amino acids Analysis Animal experimentation Animals Cells, Cultured Cercopithecus aethiops Cynomolgus Deoxyribonucleic acid DNA Endogenous Retroviruses - pathogenicity Genomes Glycosylation Health aspects Health risks In vivo methods and tests Infection Infections Leucine Macaca mulatta Medical research Molecular Sequence Data Monkeys & apes Papio Porcine endogenous retrovirus Primates Proteinase-activated receptor 1 Receptors Receptors, Virus - chemistry Receptors, Virus - physiology Retroviridae Infections - therapy Retroviridae Infections - virology Risk assessment Sequence Homology, Amino Acid Serine Species Sugar Swine Transplantation Transplantation, Heterologous Tunicamycin Tunicamycin - pharmacology Virions Virology Virology/Animal Models of Infection Virology/Host Invasion and Cell Entry Viruses Xenografts Xenotransplantation Zoonoses |
title | Suboptimal porcine endogenous retrovirus infection in non-human primate cells: implication for preclinical xenotransplantation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A36%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suboptimal%20porcine%20endogenous%20retrovirus%20infection%20in%20non-human%20primate%20cells:%20implication%20for%20preclinical%20xenotransplantation&rft.jtitle=PloS%20one&rft.au=Mattiuzzo,%20Giada&rft.date=2010-10-06&rft.volume=5&rft.issue=10&rft.spage=e13203&rft.epage=e13203&rft.pages=e13203-e13203&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0013203&rft_dat=%3Cgale_plos_%3EA473855663%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c789t-7ea0d4bfcde9ff1edbe357871f8c968a5a2521786e3781f509e0470063a7d1493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1292444363&rft_id=info:pmid/20949092&rft_galeid=A473855663&rfr_iscdi=true |