Loading…

Cooperative nuclear localization sequences lend a novel role to the N-terminal region of MSH6

Human mismatch repair proteins MSH2-MSH6 play an essential role in maintaining genetic stability and preventing disease. While protein functions have been extensively studied, the substantial amino-terminal region (NTR*) of MSH6 that is unique to eukaryotic proteins, has mostly evaded functional cha...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2011-03, Vol.6 (3), p.e17907
Main Authors: Gassman, Natalie R, Clodfelter, Jill E, McCauley, Anita K, Bonin, Keith, Salsbury, Jr, Freddie R, Scarpinato, Karin D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human mismatch repair proteins MSH2-MSH6 play an essential role in maintaining genetic stability and preventing disease. While protein functions have been extensively studied, the substantial amino-terminal region (NTR*) of MSH6 that is unique to eukaryotic proteins, has mostly evaded functional characterization. We demonstrate that a cluster of three nuclear localization signals (NLS) in the NTR direct nuclear import. Individual NLSs are capable of partially directing cytoplasmic protein into the nucleus; however only cooperative effects between all three NLSs efficiently transport MSH6 into the nucleus. In striking contrast to yeast and previous assumptions on required heterodimerization, human MSH6 does not determine localization of its heterodimeric partner, MSH2. A cancer-derived mutation localized between two of the three NLS significantly decreases nuclear localization of MSH6, suggesting altered protein localization can contribute to carcinogenesis. These results clarify the pending speculations on the functional role of the NTR in human MSH6 and identify a novel, cooperative nuclear localization signal.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0017907