Loading…

Lucy's flat feet: the relationship between the ankle and rearfoot arching in early hominins

In the Plio-Pleistocene, the hominin foot evolved from a grasping appendage to a stiff, propulsive lever. Central to this transition was the development of the longitudinal arch, a structure that helps store elastic energy and stiffen the foot during bipedal locomotion. Direct evidence for arch evol...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2010-12, Vol.5 (12), p.e14432-e14432
Main Authors: DeSilva, Jeremy M, Throckmorton, Zachary J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the Plio-Pleistocene, the hominin foot evolved from a grasping appendage to a stiff, propulsive lever. Central to this transition was the development of the longitudinal arch, a structure that helps store elastic energy and stiffen the foot during bipedal locomotion. Direct evidence for arch evolution, however, has been somewhat elusive given the failure of soft-tissue to fossilize. Paleoanthropologists have relied on footprints and bony correlates of arch development, though little consensus has emerged as to when the arch evolved. Here, we present evidence from radiographs of modern humans (n = 261) that the set of the distal tibia in the sagittal plane, henceforth referred to as the tibial arch angle, is related to rearfoot arching. Non-human primates have a posteriorly directed tibial arch angle, while most humans have an anteriorly directed tibial arch angle. Those humans with a posteriorly directed tibial arch angle (8%) have significantly lower talocalcaneal and talar declination angles, both measures of an asymptomatic flatfoot. Application of these results to the hominin fossil record reveals that a well developed rearfoot arch had evolved in Australopithecus afarensis. However, as in humans today, Australopithecus populations exhibited individual variation in foot morphology and arch development, and "Lucy" (A.L. 288-1), a 3.18 Myr-old female Australopithecus, likely possessed asymptomatic flat feet. Additional distal tibiae from the Plio-Pleistocene show variation in tibial arch angles, including two early Homo tibiae that also have slightly posteriorly directed tibial arch angles. This study finds that the rearfoot arch was present in the genus Australopithecus. However, the female Australopithecus afarensis "Lucy" has an ankle morphology consistent with non-pathological flat-footedness. This study suggests that, as in humans today, there was variation in arch development in Plio-Pleistocene hominins.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0014432