Loading…
Acoustic noise induces attention shifts and reduces foraging performance in three-spined sticklebacks (Gasterosteus aculeatus)
Acoustic noise is known to have a variety of detrimental effects on many animals, including humans, but surprisingly little is known about its impacts on foraging behaviour, despite the obvious potential consequences for survival and reproductive success. We therefore exposed captive three-spined st...
Saved in:
Published in: | PloS one 2011-02, Vol.6 (2), p.e17478 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Acoustic noise is known to have a variety of detrimental effects on many animals, including humans, but surprisingly little is known about its impacts on foraging behaviour, despite the obvious potential consequences for survival and reproductive success. We therefore exposed captive three-spined sticklebacks (Gasterosteus aculeatus) to brief and prolonged noise to investigate how foraging performance is affected by the addition of acoustic noise to an otherwise quiet environment. The addition of noise induced only mild fear-related behaviours--there was an increase in startle responses, but no change in the time spent freezing or hiding compared to a silent control--and thus had no significant impact on the total amount of food eaten. However, there was strong evidence that the addition of noise increased food-handling errors and reduced discrimination between food and non-food items, results that are consistent with a shift in attention. Consequently, noise resulted in decreased foraging efficiency, with more attacks needed to consume the same number of prey items. Our results suggest that acoustic noise has the potential to influence a whole host of everyday activities through effects on attention, and that even very brief noise exposure can cause functionally significant impacts, emphasising the threat posed by ever-increasing levels of anthropogenic noise in the environment. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0017478 |