Loading…
Loss of ATF2 function leads to cranial motoneuron degeneration during embryonic mouse development
The AP-1 family transcription factor ATF2 is essential for development and tissue maintenance in mammals. In particular, ATF2 is highly expressed and activated in the brain and previous studies using mouse knockouts have confirmed its requirement in the cerebellum as well as in vestibular sense orga...
Saved in:
Published in: | PloS one 2011-04, Vol.6 (4), p.e19090-e19090 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c757t-8eb7e81f9c12964bd4e3d662a2ae89c24876e53583d7cf79dbe362d67b8731af3 |
---|---|
cites | cdi_FETCH-LOGICAL-c757t-8eb7e81f9c12964bd4e3d662a2ae89c24876e53583d7cf79dbe362d67b8731af3 |
container_end_page | e19090 |
container_issue | 4 |
container_start_page | e19090 |
container_title | PloS one |
container_volume | 6 |
creator | Ackermann, Julien Ashton, Garry Lyons, Steve James, Dominic Hornung, Jean-Pierre Jones, Nic Breitwieser, Wolfgang |
description | The AP-1 family transcription factor ATF2 is essential for development and tissue maintenance in mammals. In particular, ATF2 is highly expressed and activated in the brain and previous studies using mouse knockouts have confirmed its requirement in the cerebellum as well as in vestibular sense organs. Here we present the analysis of the requirement for ATF2 in CNS development in mouse embryos, specifically in the brainstem. We discovered that neuron-specific inactivation of ATF2 leads to significant loss of motoneurons of the hypoglossal, abducens and facial nuclei. While the generation of ATF2 mutant motoneurons appears normal during early development, they undergo caspase-dependent and independent cell death during later embryonic and foetal stages. The loss of these motoneurons correlates with increased levels of stress activated MAP kinases, JNK and p38, as well as aberrant accumulation of phosphorylated neurofilament proteins, NF-H and NF-M, known substrates for these kinases. This, together with other neuropathological phenotypes, including aberrant vacuolisation and lipid accumulation, indicates that deficiency in ATF2 leads to neurodegeneration of subsets of somatic and visceral motoneurons of the brainstem. It also confirms that ATF2 has a critical role in limiting the activities of stress kinases JNK and p38 which are potent inducers of cell death in the CNS. |
doi_str_mv | 10.1371/journal.pone.0019090 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1296528527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476893834</galeid><doaj_id>oai_doaj_org_article_5a77f8ed48474884abc980cbb6c2d3e3</doaj_id><sourcerecordid>A476893834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c757t-8eb7e81f9c12964bd4e3d662a2ae89c24876e53583d7cf79dbe362d67b8731af3</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A9EBQfFi10ySSTI3wlKsLiwUtHobMsmZ3SmZZE1miv33ZrrTsiO9kFwkJM95T85Xlr0u0LIgvPh07YfglF3uvYMlQkWFKvQkOy0qghcMI_L06HySvYjxGqGSCMaeZye4KAlBlJ1mauNjzH2Tr64ucN4MTvetd7kFZWLe-1wH5Vpl8873yc8Q0puBLTgI6g40Q2jdNoeuDrfetTqBQ4TE3ID1-w5c_zJ71igb4dW0n2U_L75cnX9bbC6_rs9Xm4XmJe8XAmoOomgqXeCK0dpQIIYxrLACUWlMBWdQklIQw3XDK1MDYdgwXgtOCtWQs-ztQXdvfZRTdqIc1UosSswTsT4QxqtruQ9tp8Kt9KqVdxc-bKUKfastyFJx3ggwVFBOhaCq1pVAuq6ZxoYASVqfJ29D3YHRKdCg7Ex0_uLandz6G0mQQFUxCnyYBIL_PUDsZddGDdYqBymFUjDKBSnZSL77h3w8uInaqvT_1jU-udWjplxRzkRFBKGJWj5CpWWga3WqcNOm-5nBx5lBYnr402_VEKNc__j-_-zlrzn7_ojdgbL9Lno7jE0V5yA9gDqkTg3QPOS4QHIchPtsyHEQ5DQIyezNcX0ejO47n_wF4M0EDA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1296528527</pqid></control><display><type>article</type><title>Loss of ATF2 function leads to cranial motoneuron degeneration during embryonic mouse development</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Ackermann, Julien ; Ashton, Garry ; Lyons, Steve ; James, Dominic ; Hornung, Jean-Pierre ; Jones, Nic ; Breitwieser, Wolfgang</creator><contributor>Linden, Rafael</contributor><creatorcontrib>Ackermann, Julien ; Ashton, Garry ; Lyons, Steve ; James, Dominic ; Hornung, Jean-Pierre ; Jones, Nic ; Breitwieser, Wolfgang ; Linden, Rafael</creatorcontrib><description>The AP-1 family transcription factor ATF2 is essential for development and tissue maintenance in mammals. In particular, ATF2 is highly expressed and activated in the brain and previous studies using mouse knockouts have confirmed its requirement in the cerebellum as well as in vestibular sense organs. Here we present the analysis of the requirement for ATF2 in CNS development in mouse embryos, specifically in the brainstem. We discovered that neuron-specific inactivation of ATF2 leads to significant loss of motoneurons of the hypoglossal, abducens and facial nuclei. While the generation of ATF2 mutant motoneurons appears normal during early development, they undergo caspase-dependent and independent cell death during later embryonic and foetal stages. The loss of these motoneurons correlates with increased levels of stress activated MAP kinases, JNK and p38, as well as aberrant accumulation of phosphorylated neurofilament proteins, NF-H and NF-M, known substrates for these kinases. This, together with other neuropathological phenotypes, including aberrant vacuolisation and lipid accumulation, indicates that deficiency in ATF2 leads to neurodegeneration of subsets of somatic and visceral motoneurons of the brainstem. It also confirms that ATF2 has a critical role in limiting the activities of stress kinases JNK and p38 which are potent inducers of cell death in the CNS.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0019090</identifier><identifier>PMID: 21533046</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aberration ; Accumulation ; Activating Transcription Factor 2 - genetics ; Activating Transcription Factor 2 - physiology ; Activator protein 1 ; Amyotrophic lateral sclerosis ; Analysis ; Animals ; Apoptosis ; Axons ; Biology ; Brain ; Brain research ; Brain stem ; Brain Stem - cytology ; Brain Stem - embryology ; Cancer ; Caspase ; Cell death ; Central nervous system ; Cerebellum ; Deactivation ; Defects ; Degeneration ; Deoxyribonucleic acid ; DNA ; Dual-Specificity Phosphatases - genetics ; Embryo, Mammalian - cytology ; Embryogenesis ; Embryonic development ; Embryos ; Gene Expression Regulation, Developmental - physiology ; Gene Expression Regulation, Enzymologic - physiology ; Hypoglossal nerve ; Inactivation ; Ischemia ; JNK protein ; Kinases ; Ligands ; Lipid peroxidation ; Medical research ; Medicine ; Mice ; Microscopy ; Motor Neurons - pathology ; Nervous system ; Neurodegeneration ; Neurons ; Neuropathology ; Organs ; Parkinson's disease ; Phosphorylation ; Phosphotransferases ; Physiological aspects ; Proteins ; Proto-Oncogene Proteins c-jun - genetics ; Rodents ; Sense organs ; Skull ; Skull - innervation ; Substrates ; Transcription factors ; Vestibular system</subject><ispartof>PloS one, 2011-04, Vol.6 (4), p.e19090-e19090</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Ackermann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Ackermann et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c757t-8eb7e81f9c12964bd4e3d662a2ae89c24876e53583d7cf79dbe362d67b8731af3</citedby><cites>FETCH-LOGICAL-c757t-8eb7e81f9c12964bd4e3d662a2ae89c24876e53583d7cf79dbe362d67b8731af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1296528527/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1296528527?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21533046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Linden, Rafael</contributor><creatorcontrib>Ackermann, Julien</creatorcontrib><creatorcontrib>Ashton, Garry</creatorcontrib><creatorcontrib>Lyons, Steve</creatorcontrib><creatorcontrib>James, Dominic</creatorcontrib><creatorcontrib>Hornung, Jean-Pierre</creatorcontrib><creatorcontrib>Jones, Nic</creatorcontrib><creatorcontrib>Breitwieser, Wolfgang</creatorcontrib><title>Loss of ATF2 function leads to cranial motoneuron degeneration during embryonic mouse development</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The AP-1 family transcription factor ATF2 is essential for development and tissue maintenance in mammals. In particular, ATF2 is highly expressed and activated in the brain and previous studies using mouse knockouts have confirmed its requirement in the cerebellum as well as in vestibular sense organs. Here we present the analysis of the requirement for ATF2 in CNS development in mouse embryos, specifically in the brainstem. We discovered that neuron-specific inactivation of ATF2 leads to significant loss of motoneurons of the hypoglossal, abducens and facial nuclei. While the generation of ATF2 mutant motoneurons appears normal during early development, they undergo caspase-dependent and independent cell death during later embryonic and foetal stages. The loss of these motoneurons correlates with increased levels of stress activated MAP kinases, JNK and p38, as well as aberrant accumulation of phosphorylated neurofilament proteins, NF-H and NF-M, known substrates for these kinases. This, together with other neuropathological phenotypes, including aberrant vacuolisation and lipid accumulation, indicates that deficiency in ATF2 leads to neurodegeneration of subsets of somatic and visceral motoneurons of the brainstem. It also confirms that ATF2 has a critical role in limiting the activities of stress kinases JNK and p38 which are potent inducers of cell death in the CNS.</description><subject>Aberration</subject><subject>Accumulation</subject><subject>Activating Transcription Factor 2 - genetics</subject><subject>Activating Transcription Factor 2 - physiology</subject><subject>Activator protein 1</subject><subject>Amyotrophic lateral sclerosis</subject><subject>Analysis</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Axons</subject><subject>Biology</subject><subject>Brain</subject><subject>Brain research</subject><subject>Brain stem</subject><subject>Brain Stem - cytology</subject><subject>Brain Stem - embryology</subject><subject>Cancer</subject><subject>Caspase</subject><subject>Cell death</subject><subject>Central nervous system</subject><subject>Cerebellum</subject><subject>Deactivation</subject><subject>Defects</subject><subject>Degeneration</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Dual-Specificity Phosphatases - genetics</subject><subject>Embryo, Mammalian - cytology</subject><subject>Embryogenesis</subject><subject>Embryonic development</subject><subject>Embryos</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>Gene Expression Regulation, Enzymologic - physiology</subject><subject>Hypoglossal nerve</subject><subject>Inactivation</subject><subject>Ischemia</subject><subject>JNK protein</subject><subject>Kinases</subject><subject>Ligands</subject><subject>Lipid peroxidation</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Motor Neurons - pathology</subject><subject>Nervous system</subject><subject>Neurodegeneration</subject><subject>Neurons</subject><subject>Neuropathology</subject><subject>Organs</subject><subject>Parkinson's disease</subject><subject>Phosphorylation</subject><subject>Phosphotransferases</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-jun - genetics</subject><subject>Rodents</subject><subject>Sense organs</subject><subject>Skull</subject><subject>Skull - innervation</subject><subject>Substrates</subject><subject>Transcription factors</subject><subject>Vestibular system</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A9EBQfFi10ySSTI3wlKsLiwUtHobMsmZ3SmZZE1miv33ZrrTsiO9kFwkJM95T85Xlr0u0LIgvPh07YfglF3uvYMlQkWFKvQkOy0qghcMI_L06HySvYjxGqGSCMaeZye4KAlBlJ1mauNjzH2Tr64ucN4MTvetd7kFZWLe-1wH5Vpl8873yc8Q0puBLTgI6g40Q2jdNoeuDrfetTqBQ4TE3ID1-w5c_zJ71igb4dW0n2U_L75cnX9bbC6_rs9Xm4XmJe8XAmoOomgqXeCK0dpQIIYxrLACUWlMBWdQklIQw3XDK1MDYdgwXgtOCtWQs-ztQXdvfZRTdqIc1UosSswTsT4QxqtruQ9tp8Kt9KqVdxc-bKUKfastyFJx3ggwVFBOhaCq1pVAuq6ZxoYASVqfJ29D3YHRKdCg7Ex0_uLandz6G0mQQFUxCnyYBIL_PUDsZddGDdYqBymFUjDKBSnZSL77h3w8uInaqvT_1jU-udWjplxRzkRFBKGJWj5CpWWga3WqcNOm-5nBx5lBYnr402_VEKNc__j-_-zlrzn7_ojdgbL9Lno7jE0V5yA9gDqkTg3QPOS4QHIchPtsyHEQ5DQIyezNcX0ejO47n_wF4M0EDA</recordid><startdate>20110421</startdate><enddate>20110421</enddate><creator>Ackermann, Julien</creator><creator>Ashton, Garry</creator><creator>Lyons, Steve</creator><creator>James, Dominic</creator><creator>Hornung, Jean-Pierre</creator><creator>Jones, Nic</creator><creator>Breitwieser, Wolfgang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110421</creationdate><title>Loss of ATF2 function leads to cranial motoneuron degeneration during embryonic mouse development</title><author>Ackermann, Julien ; Ashton, Garry ; Lyons, Steve ; James, Dominic ; Hornung, Jean-Pierre ; Jones, Nic ; Breitwieser, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c757t-8eb7e81f9c12964bd4e3d662a2ae89c24876e53583d7cf79dbe362d67b8731af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aberration</topic><topic>Accumulation</topic><topic>Activating Transcription Factor 2 - genetics</topic><topic>Activating Transcription Factor 2 - physiology</topic><topic>Activator protein 1</topic><topic>Amyotrophic lateral sclerosis</topic><topic>Analysis</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Axons</topic><topic>Biology</topic><topic>Brain</topic><topic>Brain research</topic><topic>Brain stem</topic><topic>Brain Stem - cytology</topic><topic>Brain Stem - embryology</topic><topic>Cancer</topic><topic>Caspase</topic><topic>Cell death</topic><topic>Central nervous system</topic><topic>Cerebellum</topic><topic>Deactivation</topic><topic>Defects</topic><topic>Degeneration</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Dual-Specificity Phosphatases - genetics</topic><topic>Embryo, Mammalian - cytology</topic><topic>Embryogenesis</topic><topic>Embryonic development</topic><topic>Embryos</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>Gene Expression Regulation, Enzymologic - physiology</topic><topic>Hypoglossal nerve</topic><topic>Inactivation</topic><topic>Ischemia</topic><topic>JNK protein</topic><topic>Kinases</topic><topic>Ligands</topic><topic>Lipid peroxidation</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Motor Neurons - pathology</topic><topic>Nervous system</topic><topic>Neurodegeneration</topic><topic>Neurons</topic><topic>Neuropathology</topic><topic>Organs</topic><topic>Parkinson's disease</topic><topic>Phosphorylation</topic><topic>Phosphotransferases</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-jun - genetics</topic><topic>Rodents</topic><topic>Sense organs</topic><topic>Skull</topic><topic>Skull - innervation</topic><topic>Substrates</topic><topic>Transcription factors</topic><topic>Vestibular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ackermann, Julien</creatorcontrib><creatorcontrib>Ashton, Garry</creatorcontrib><creatorcontrib>Lyons, Steve</creatorcontrib><creatorcontrib>James, Dominic</creatorcontrib><creatorcontrib>Hornung, Jean-Pierre</creatorcontrib><creatorcontrib>Jones, Nic</creatorcontrib><creatorcontrib>Breitwieser, Wolfgang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Proquest Health & Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ackermann, Julien</au><au>Ashton, Garry</au><au>Lyons, Steve</au><au>James, Dominic</au><au>Hornung, Jean-Pierre</au><au>Jones, Nic</au><au>Breitwieser, Wolfgang</au><au>Linden, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of ATF2 function leads to cranial motoneuron degeneration during embryonic mouse development</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-04-21</date><risdate>2011</risdate><volume>6</volume><issue>4</issue><spage>e19090</spage><epage>e19090</epage><pages>e19090-e19090</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The AP-1 family transcription factor ATF2 is essential for development and tissue maintenance in mammals. In particular, ATF2 is highly expressed and activated in the brain and previous studies using mouse knockouts have confirmed its requirement in the cerebellum as well as in vestibular sense organs. Here we present the analysis of the requirement for ATF2 in CNS development in mouse embryos, specifically in the brainstem. We discovered that neuron-specific inactivation of ATF2 leads to significant loss of motoneurons of the hypoglossal, abducens and facial nuclei. While the generation of ATF2 mutant motoneurons appears normal during early development, they undergo caspase-dependent and independent cell death during later embryonic and foetal stages. The loss of these motoneurons correlates with increased levels of stress activated MAP kinases, JNK and p38, as well as aberrant accumulation of phosphorylated neurofilament proteins, NF-H and NF-M, known substrates for these kinases. This, together with other neuropathological phenotypes, including aberrant vacuolisation and lipid accumulation, indicates that deficiency in ATF2 leads to neurodegeneration of subsets of somatic and visceral motoneurons of the brainstem. It also confirms that ATF2 has a critical role in limiting the activities of stress kinases JNK and p38 which are potent inducers of cell death in the CNS.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21533046</pmid><doi>10.1371/journal.pone.0019090</doi><tpages>e19090</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-04, Vol.6 (4), p.e19090-e19090 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1296528527 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Aberration Accumulation Activating Transcription Factor 2 - genetics Activating Transcription Factor 2 - physiology Activator protein 1 Amyotrophic lateral sclerosis Analysis Animals Apoptosis Axons Biology Brain Brain research Brain stem Brain Stem - cytology Brain Stem - embryology Cancer Caspase Cell death Central nervous system Cerebellum Deactivation Defects Degeneration Deoxyribonucleic acid DNA Dual-Specificity Phosphatases - genetics Embryo, Mammalian - cytology Embryogenesis Embryonic development Embryos Gene Expression Regulation, Developmental - physiology Gene Expression Regulation, Enzymologic - physiology Hypoglossal nerve Inactivation Ischemia JNK protein Kinases Ligands Lipid peroxidation Medical research Medicine Mice Microscopy Motor Neurons - pathology Nervous system Neurodegeneration Neurons Neuropathology Organs Parkinson's disease Phosphorylation Phosphotransferases Physiological aspects Proteins Proto-Oncogene Proteins c-jun - genetics Rodents Sense organs Skull Skull - innervation Substrates Transcription factors Vestibular system |
title | Loss of ATF2 function leads to cranial motoneuron degeneration during embryonic mouse development |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A04%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20ATF2%20function%20leads%20to%20cranial%20motoneuron%20degeneration%20during%20embryonic%20mouse%20development&rft.jtitle=PloS%20one&rft.au=Ackermann,%20Julien&rft.date=2011-04-21&rft.volume=6&rft.issue=4&rft.spage=e19090&rft.epage=e19090&rft.pages=e19090-e19090&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0019090&rft_dat=%3Cgale_plos_%3EA476893834%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c757t-8eb7e81f9c12964bd4e3d662a2ae89c24876e53583d7cf79dbe362d67b8731af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1296528527&rft_id=info:pmid/21533046&rft_galeid=A476893834&rfr_iscdi=true |