Loading…
Genome-wide DNA methylation analysis reveals phytoestrogen modification of promoter methylation patterns during embryonic stem cell differentiation
Environmental challenges during development affect the fetal epigenome, but the period(s) vulnerable to epigenetic dysregulation is(are) not clear. By employing a soy phytoestrogen, genistein, that is known to alter the epigenetic states of the A(vy) allele during embryogenesis, we have explored the...
Saved in:
Published in: | PloS one 2011-04, Vol.6 (4), p.e19278-e19278 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Environmental challenges during development affect the fetal epigenome, but the period(s) vulnerable to epigenetic dysregulation is(are) not clear. By employing a soy phytoestrogen, genistein, that is known to alter the epigenetic states of the A(vy) allele during embryogenesis, we have explored the sensitive period for epigenetic regulation. The post-implantation period, when de novo DNA methylation actively proceeds, is amenable to in vitro analysis using a mouse embryonic stem (ES) cell differentiation system.
Mouse ES cells were differentiated in the presence or absence of genistein, and DNA methylation patterns on day 10 were compared by microarray-based promoter methylation analysis coupled with a methylation-sensitive endonuclease (HpaII/McrBC)-dependent enrichment procedure. Moderate changes in methylation levels were observed in a subset of promoters following genistein treatment. Detailed investigation of the Ucp1 and Sytl1 promoters further revealed that genistein does not affect de novo methylation occurring between day 0 and day 4, but interferes with subsequent regulatory processes and leads to a decrease in methylation level for both promoters.
Genistein perturbed the methylation pattern of differentiated ES cells after de novo methylation. Our observations suggest that, for a subset of genes, regulation after de novo DNA methylation in the early embryo may be sensitive to genistein. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0019278 |