Loading…

Automated discrimination of brain pathological state attending to complex structural brain network properties: the shiverer mutant mouse case

Neuroimaging classification procedures between normal and pathological subjects are sparse and highly dependent of an expert's clinical criterion. Here, we aimed to investigate whether possible brain structural network differences in the shiverer mouse mutant, a relevant animal model of myelin...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2011-05, Vol.6 (5), p.e19071-e19071
Main Authors: Iturria-Medina, Yasser, Pérez Fernández, Alejandro, Valdés Hernández, Pedro, García Pentón, Lorna, Canales-Rodríguez, Erick J, Melie-Garcia, Lester, Lage Castellanos, Agustin, Ontivero Ortega, Marlis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c691t-110393f6e43a02f818a921abd5d50c2d1bc5a42fc260d797981ac110b7c7ac803
cites cdi_FETCH-LOGICAL-c691t-110393f6e43a02f818a921abd5d50c2d1bc5a42fc260d797981ac110b7c7ac803
container_end_page e19071
container_issue 5
container_start_page e19071
container_title PloS one
container_volume 6
creator Iturria-Medina, Yasser
Pérez Fernández, Alejandro
Valdés Hernández, Pedro
García Pentón, Lorna
Canales-Rodríguez, Erick J
Melie-Garcia, Lester
Lage Castellanos, Agustin
Ontivero Ortega, Marlis
description Neuroimaging classification procedures between normal and pathological subjects are sparse and highly dependent of an expert's clinical criterion. Here, we aimed to investigate whether possible brain structural network differences in the shiverer mouse mutant, a relevant animal model of myelin related diseases, can reflect intrinsic individual brain properties that allow the automatic discrimination between the shiverer and normal subjects. Common structural networks properties between shiverer (C3Fe.SWV Mbp(shi)/Mbp(shi), n = 6) and background control (C3HeB.FeJ, n = 6) mice are estimated and compared by means of three diffusion weighted MRI (DW-MRI) fiber tractography algorithms and a graph framework. Firstly, we found that brain networks of control group are significantly more clustered, modularized, efficient and optimized than those of the shiverer group, which presented significantly increased characteristic path length. These results are in line with previous structural/functional complex brain networks analysis that have revealed topologic differences and brain network randomization associated to specific states of human brain pathology. In addition, by means of network measures spatial representations and discrimination analysis, we show that it is possible to classify with high accuracy to which group each subject belongs, providing also a probability value of being a normal or shiverer subject as an individual anatomical classifier. The obtained correct predictions (e.g., around 91.6-100%) and clear spatial subdivisions between control and shiverer mice, suggest that there might exist specific network subspaces corresponding to specific brain disorders, supporting also the point of view that complex brain network analyses constitutes promising tools in the future creation of interpretable imaging biomarkers.
doi_str_mv 10.1371/journal.pone.0019071
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1298332560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476889500</galeid><doaj_id>oai_doaj_org_article_e20e9a1769b14e1fb4779b6b2241f1ca</doaj_id><sourcerecordid>A476889500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-110393f6e43a02f818a921abd5d50c2d1bc5a42fc260d797981ac110b7c7ac803</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEolB4AwSWkEBc7OJDEsdcIFUVh0qVKnG6tSbOZNclsYPtlPIQvDNedlt1US9QLhLZ3_8784-nKJ4wumRCstfnfg4OhuXkHS4pZYpKdqd4wJTgi5pTcffG90HxMMZzSivR1PX94oCzWkhZiQfF76M5-RESdqSz0QQ7WgfJekd8T9oA1pEJ0toPfmUNDCSmzBJICV1n3YokT4wfpwEv81aYTZpDprZCh-mnD9_JFPyEIVmMb0haI4lre4EBAxnnBC6R0c8RiYGIj4p7PQwRH-_eh8XX9---HH9cnJ59ODk-Ol2YWrG0YIwKJfoaSwGU9w1rQHEGbVd1FTW8Y62poOS94TXtpJKqYWCyqJVGgmmoOCyebX2nwUe9SzJqxlUjBK_qDXGyJToP53rKuUD4pT1Y_XfBh5WGXJIZUCOnqIDJWrWsRNa3pZSqrVvOS9YzA9nr7e60uR2xM-hSDmnPdH_H2bVe-Qstcp1Vbtph8XJnEPyPGWPSY-4VDgM4zNnpRlKuGK1lJp__Q95e3I5aQf5_63qfjzUbT31UyrppVEU31PIWKj8djtbkW9fbvL4neLUnyEzCy7SCOUZ98vnT_7Nn3_bZFzfYNcKQ1tEP8-aaxn2w3IIm-BgD9tcZM6o3Q3OVht4Mjd4NTZY9vdmfa9HVlIg_UVUU5g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298332560</pqid></control><display><type>article</type><title>Automated discrimination of brain pathological state attending to complex structural brain network properties: the shiverer mutant mouse case</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Iturria-Medina, Yasser ; Pérez Fernández, Alejandro ; Valdés Hernández, Pedro ; García Pentón, Lorna ; Canales-Rodríguez, Erick J ; Melie-Garcia, Lester ; Lage Castellanos, Agustin ; Ontivero Ortega, Marlis</creator><contributor>He, Yong</contributor><creatorcontrib>Iturria-Medina, Yasser ; Pérez Fernández, Alejandro ; Valdés Hernández, Pedro ; García Pentón, Lorna ; Canales-Rodríguez, Erick J ; Melie-Garcia, Lester ; Lage Castellanos, Agustin ; Ontivero Ortega, Marlis ; He, Yong</creatorcontrib><description>Neuroimaging classification procedures between normal and pathological subjects are sparse and highly dependent of an expert's clinical criterion. Here, we aimed to investigate whether possible brain structural network differences in the shiverer mouse mutant, a relevant animal model of myelin related diseases, can reflect intrinsic individual brain properties that allow the automatic discrimination between the shiverer and normal subjects. Common structural networks properties between shiverer (C3Fe.SWV Mbp(shi)/Mbp(shi), n = 6) and background control (C3HeB.FeJ, n = 6) mice are estimated and compared by means of three diffusion weighted MRI (DW-MRI) fiber tractography algorithms and a graph framework. Firstly, we found that brain networks of control group are significantly more clustered, modularized, efficient and optimized than those of the shiverer group, which presented significantly increased characteristic path length. These results are in line with previous structural/functional complex brain networks analysis that have revealed topologic differences and brain network randomization associated to specific states of human brain pathology. In addition, by means of network measures spatial representations and discrimination analysis, we show that it is possible to classify with high accuracy to which group each subject belongs, providing also a probability value of being a normal or shiverer subject as an individual anatomical classifier. The obtained correct predictions (e.g., around 91.6-100%) and clear spatial subdivisions between control and shiverer mice, suggest that there might exist specific network subspaces corresponding to specific brain disorders, supporting also the point of view that complex brain network analyses constitutes promising tools in the future creation of interpretable imaging biomarkers.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0019071</identifier><identifier>PMID: 21637753</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Alzheimer's disease ; Alzheimers disease ; Animals ; Automation ; Bioindicators ; Biology ; Biomarkers ; Brain ; Brain - pathology ; Brain - physiopathology ; Brain research ; Cluster Analysis ; Comparative analysis ; Diffusion Magnetic Resonance Imaging ; Discrimination ; Electroencephalography ; Laboratories ; Magnetic resonance imaging ; Medical imaging ; Mice ; Mice, Neurologic Mutants ; Multiple sclerosis ; Myelin ; Nerve Net - physiopathology ; Networks ; Neuroimaging ; Neurology ; Neurosciences ; Properties (attributes) ; Shivering - physiology ; Spatial analysis ; Spatial discrimination ; Structure-function relationships ; Studies ; Subdivisions ; Subspaces ; Topography</subject><ispartof>PloS one, 2011-05, Vol.6 (5), p.e19071-e19071</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Iturria-Medina et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Iturria-Medina et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-110393f6e43a02f818a921abd5d50c2d1bc5a42fc260d797981ac110b7c7ac803</citedby><cites>FETCH-LOGICAL-c691t-110393f6e43a02f818a921abd5d50c2d1bc5a42fc260d797981ac110b7c7ac803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1298332560/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1298332560?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21637753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>He, Yong</contributor><creatorcontrib>Iturria-Medina, Yasser</creatorcontrib><creatorcontrib>Pérez Fernández, Alejandro</creatorcontrib><creatorcontrib>Valdés Hernández, Pedro</creatorcontrib><creatorcontrib>García Pentón, Lorna</creatorcontrib><creatorcontrib>Canales-Rodríguez, Erick J</creatorcontrib><creatorcontrib>Melie-Garcia, Lester</creatorcontrib><creatorcontrib>Lage Castellanos, Agustin</creatorcontrib><creatorcontrib>Ontivero Ortega, Marlis</creatorcontrib><title>Automated discrimination of brain pathological state attending to complex structural brain network properties: the shiverer mutant mouse case</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Neuroimaging classification procedures between normal and pathological subjects are sparse and highly dependent of an expert's clinical criterion. Here, we aimed to investigate whether possible brain structural network differences in the shiverer mouse mutant, a relevant animal model of myelin related diseases, can reflect intrinsic individual brain properties that allow the automatic discrimination between the shiverer and normal subjects. Common structural networks properties between shiverer (C3Fe.SWV Mbp(shi)/Mbp(shi), n = 6) and background control (C3HeB.FeJ, n = 6) mice are estimated and compared by means of three diffusion weighted MRI (DW-MRI) fiber tractography algorithms and a graph framework. Firstly, we found that brain networks of control group are significantly more clustered, modularized, efficient and optimized than those of the shiverer group, which presented significantly increased characteristic path length. These results are in line with previous structural/functional complex brain networks analysis that have revealed topologic differences and brain network randomization associated to specific states of human brain pathology. In addition, by means of network measures spatial representations and discrimination analysis, we show that it is possible to classify with high accuracy to which group each subject belongs, providing also a probability value of being a normal or shiverer subject as an individual anatomical classifier. The obtained correct predictions (e.g., around 91.6-100%) and clear spatial subdivisions between control and shiverer mice, suggest that there might exist specific network subspaces corresponding to specific brain disorders, supporting also the point of view that complex brain network analyses constitutes promising tools in the future creation of interpretable imaging biomarkers.</description><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Alzheimers disease</subject><subject>Animals</subject><subject>Automation</subject><subject>Bioindicators</subject><subject>Biology</subject><subject>Biomarkers</subject><subject>Brain</subject><subject>Brain - pathology</subject><subject>Brain - physiopathology</subject><subject>Brain research</subject><subject>Cluster Analysis</subject><subject>Comparative analysis</subject><subject>Diffusion Magnetic Resonance Imaging</subject><subject>Discrimination</subject><subject>Electroencephalography</subject><subject>Laboratories</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Mice</subject><subject>Mice, Neurologic Mutants</subject><subject>Multiple sclerosis</subject><subject>Myelin</subject><subject>Nerve Net - physiopathology</subject><subject>Networks</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Properties (attributes)</subject><subject>Shivering - physiology</subject><subject>Spatial analysis</subject><subject>Spatial discrimination</subject><subject>Structure-function relationships</subject><subject>Studies</subject><subject>Subdivisions</subject><subject>Subspaces</subject><subject>Topography</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEolB4AwSWkEBc7OJDEsdcIFUVh0qVKnG6tSbOZNclsYPtlPIQvDNedlt1US9QLhLZ3_8784-nKJ4wumRCstfnfg4OhuXkHS4pZYpKdqd4wJTgi5pTcffG90HxMMZzSivR1PX94oCzWkhZiQfF76M5-RESdqSz0QQ7WgfJekd8T9oA1pEJ0toPfmUNDCSmzBJICV1n3YokT4wfpwEv81aYTZpDprZCh-mnD9_JFPyEIVmMb0haI4lre4EBAxnnBC6R0c8RiYGIj4p7PQwRH-_eh8XX9---HH9cnJ59ODk-Ol2YWrG0YIwKJfoaSwGU9w1rQHEGbVd1FTW8Y62poOS94TXtpJKqYWCyqJVGgmmoOCyebX2nwUe9SzJqxlUjBK_qDXGyJToP53rKuUD4pT1Y_XfBh5WGXJIZUCOnqIDJWrWsRNa3pZSqrVvOS9YzA9nr7e60uR2xM-hSDmnPdH_H2bVe-Qstcp1Vbtph8XJnEPyPGWPSY-4VDgM4zNnpRlKuGK1lJp__Q95e3I5aQf5_63qfjzUbT31UyrppVEU31PIWKj8djtbkW9fbvL4neLUnyEzCy7SCOUZ98vnT_7Nn3_bZFzfYNcKQ1tEP8-aaxn2w3IIm-BgD9tcZM6o3Q3OVht4Mjd4NTZY9vdmfa9HVlIg_UVUU5g</recordid><startdate>20110527</startdate><enddate>20110527</enddate><creator>Iturria-Medina, Yasser</creator><creator>Pérez Fernández, Alejandro</creator><creator>Valdés Hernández, Pedro</creator><creator>García Pentón, Lorna</creator><creator>Canales-Rodríguez, Erick J</creator><creator>Melie-Garcia, Lester</creator><creator>Lage Castellanos, Agustin</creator><creator>Ontivero Ortega, Marlis</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110527</creationdate><title>Automated discrimination of brain pathological state attending to complex structural brain network properties: the shiverer mutant mouse case</title><author>Iturria-Medina, Yasser ; Pérez Fernández, Alejandro ; Valdés Hernández, Pedro ; García Pentón, Lorna ; Canales-Rodríguez, Erick J ; Melie-Garcia, Lester ; Lage Castellanos, Agustin ; Ontivero Ortega, Marlis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-110393f6e43a02f818a921abd5d50c2d1bc5a42fc260d797981ac110b7c7ac803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Alzheimers disease</topic><topic>Animals</topic><topic>Automation</topic><topic>Bioindicators</topic><topic>Biology</topic><topic>Biomarkers</topic><topic>Brain</topic><topic>Brain - pathology</topic><topic>Brain - physiopathology</topic><topic>Brain research</topic><topic>Cluster Analysis</topic><topic>Comparative analysis</topic><topic>Diffusion Magnetic Resonance Imaging</topic><topic>Discrimination</topic><topic>Electroencephalography</topic><topic>Laboratories</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Mice</topic><topic>Mice, Neurologic Mutants</topic><topic>Multiple sclerosis</topic><topic>Myelin</topic><topic>Nerve Net - physiopathology</topic><topic>Networks</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Properties (attributes)</topic><topic>Shivering - physiology</topic><topic>Spatial analysis</topic><topic>Spatial discrimination</topic><topic>Structure-function relationships</topic><topic>Studies</topic><topic>Subdivisions</topic><topic>Subspaces</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iturria-Medina, Yasser</creatorcontrib><creatorcontrib>Pérez Fernández, Alejandro</creatorcontrib><creatorcontrib>Valdés Hernández, Pedro</creatorcontrib><creatorcontrib>García Pentón, Lorna</creatorcontrib><creatorcontrib>Canales-Rodríguez, Erick J</creatorcontrib><creatorcontrib>Melie-Garcia, Lester</creatorcontrib><creatorcontrib>Lage Castellanos, Agustin</creatorcontrib><creatorcontrib>Ontivero Ortega, Marlis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iturria-Medina, Yasser</au><au>Pérez Fernández, Alejandro</au><au>Valdés Hernández, Pedro</au><au>García Pentón, Lorna</au><au>Canales-Rodríguez, Erick J</au><au>Melie-Garcia, Lester</au><au>Lage Castellanos, Agustin</au><au>Ontivero Ortega, Marlis</au><au>He, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated discrimination of brain pathological state attending to complex structural brain network properties: the shiverer mutant mouse case</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-05-27</date><risdate>2011</risdate><volume>6</volume><issue>5</issue><spage>e19071</spage><epage>e19071</epage><pages>e19071-e19071</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Neuroimaging classification procedures between normal and pathological subjects are sparse and highly dependent of an expert's clinical criterion. Here, we aimed to investigate whether possible brain structural network differences in the shiverer mouse mutant, a relevant animal model of myelin related diseases, can reflect intrinsic individual brain properties that allow the automatic discrimination between the shiverer and normal subjects. Common structural networks properties between shiverer (C3Fe.SWV Mbp(shi)/Mbp(shi), n = 6) and background control (C3HeB.FeJ, n = 6) mice are estimated and compared by means of three diffusion weighted MRI (DW-MRI) fiber tractography algorithms and a graph framework. Firstly, we found that brain networks of control group are significantly more clustered, modularized, efficient and optimized than those of the shiverer group, which presented significantly increased characteristic path length. These results are in line with previous structural/functional complex brain networks analysis that have revealed topologic differences and brain network randomization associated to specific states of human brain pathology. In addition, by means of network measures spatial representations and discrimination analysis, we show that it is possible to classify with high accuracy to which group each subject belongs, providing also a probability value of being a normal or shiverer subject as an individual anatomical classifier. The obtained correct predictions (e.g., around 91.6-100%) and clear spatial subdivisions between control and shiverer mice, suggest that there might exist specific network subspaces corresponding to specific brain disorders, supporting also the point of view that complex brain network analyses constitutes promising tools in the future creation of interpretable imaging biomarkers.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21637753</pmid><doi>10.1371/journal.pone.0019071</doi><tpages>e19071</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-05, Vol.6 (5), p.e19071-e19071
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1298332560
source PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Alzheimer's disease
Alzheimers disease
Animals
Automation
Bioindicators
Biology
Biomarkers
Brain
Brain - pathology
Brain - physiopathology
Brain research
Cluster Analysis
Comparative analysis
Diffusion Magnetic Resonance Imaging
Discrimination
Electroencephalography
Laboratories
Magnetic resonance imaging
Medical imaging
Mice
Mice, Neurologic Mutants
Multiple sclerosis
Myelin
Nerve Net - physiopathology
Networks
Neuroimaging
Neurology
Neurosciences
Properties (attributes)
Shivering - physiology
Spatial analysis
Spatial discrimination
Structure-function relationships
Studies
Subdivisions
Subspaces
Topography
title Automated discrimination of brain pathological state attending to complex structural brain network properties: the shiverer mutant mouse case
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20discrimination%20of%20brain%20pathological%20state%20attending%20to%20complex%20structural%20brain%20network%20properties:%20the%20shiverer%20mutant%20mouse%20case&rft.jtitle=PloS%20one&rft.au=Iturria-Medina,%20Yasser&rft.date=2011-05-27&rft.volume=6&rft.issue=5&rft.spage=e19071&rft.epage=e19071&rft.pages=e19071-e19071&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0019071&rft_dat=%3Cgale_plos_%3EA476889500%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c691t-110393f6e43a02f818a921abd5d50c2d1bc5a42fc260d797981ac110b7c7ac803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1298332560&rft_id=info:pmid/21637753&rft_galeid=A476889500&rfr_iscdi=true