Loading…
Automated discrimination of brain pathological state attending to complex structural brain network properties: the shiverer mutant mouse case
Neuroimaging classification procedures between normal and pathological subjects are sparse and highly dependent of an expert's clinical criterion. Here, we aimed to investigate whether possible brain structural network differences in the shiverer mouse mutant, a relevant animal model of myelin...
Saved in:
Published in: | PloS one 2011-05, Vol.6 (5), p.e19071-e19071 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c691t-110393f6e43a02f818a921abd5d50c2d1bc5a42fc260d797981ac110b7c7ac803 |
---|---|
cites | cdi_FETCH-LOGICAL-c691t-110393f6e43a02f818a921abd5d50c2d1bc5a42fc260d797981ac110b7c7ac803 |
container_end_page | e19071 |
container_issue | 5 |
container_start_page | e19071 |
container_title | PloS one |
container_volume | 6 |
creator | Iturria-Medina, Yasser Pérez Fernández, Alejandro Valdés Hernández, Pedro García Pentón, Lorna Canales-Rodríguez, Erick J Melie-Garcia, Lester Lage Castellanos, Agustin Ontivero Ortega, Marlis |
description | Neuroimaging classification procedures between normal and pathological subjects are sparse and highly dependent of an expert's clinical criterion. Here, we aimed to investigate whether possible brain structural network differences in the shiverer mouse mutant, a relevant animal model of myelin related diseases, can reflect intrinsic individual brain properties that allow the automatic discrimination between the shiverer and normal subjects. Common structural networks properties between shiverer (C3Fe.SWV Mbp(shi)/Mbp(shi), n = 6) and background control (C3HeB.FeJ, n = 6) mice are estimated and compared by means of three diffusion weighted MRI (DW-MRI) fiber tractography algorithms and a graph framework. Firstly, we found that brain networks of control group are significantly more clustered, modularized, efficient and optimized than those of the shiverer group, which presented significantly increased characteristic path length. These results are in line with previous structural/functional complex brain networks analysis that have revealed topologic differences and brain network randomization associated to specific states of human brain pathology. In addition, by means of network measures spatial representations and discrimination analysis, we show that it is possible to classify with high accuracy to which group each subject belongs, providing also a probability value of being a normal or shiverer subject as an individual anatomical classifier. The obtained correct predictions (e.g., around 91.6-100%) and clear spatial subdivisions between control and shiverer mice, suggest that there might exist specific network subspaces corresponding to specific brain disorders, supporting also the point of view that complex brain network analyses constitutes promising tools in the future creation of interpretable imaging biomarkers. |
doi_str_mv | 10.1371/journal.pone.0019071 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1298332560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476889500</galeid><doaj_id>oai_doaj_org_article_e20e9a1769b14e1fb4779b6b2241f1ca</doaj_id><sourcerecordid>A476889500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-110393f6e43a02f818a921abd5d50c2d1bc5a42fc260d797981ac110b7c7ac803</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEolB4AwSWkEBc7OJDEsdcIFUVh0qVKnG6tSbOZNclsYPtlPIQvDNedlt1US9QLhLZ3_8784-nKJ4wumRCstfnfg4OhuXkHS4pZYpKdqd4wJTgi5pTcffG90HxMMZzSivR1PX94oCzWkhZiQfF76M5-RESdqSz0QQ7WgfJekd8T9oA1pEJ0toPfmUNDCSmzBJICV1n3YokT4wfpwEv81aYTZpDprZCh-mnD9_JFPyEIVmMb0haI4lre4EBAxnnBC6R0c8RiYGIj4p7PQwRH-_eh8XX9---HH9cnJ59ODk-Ol2YWrG0YIwKJfoaSwGU9w1rQHEGbVd1FTW8Y62poOS94TXtpJKqYWCyqJVGgmmoOCyebX2nwUe9SzJqxlUjBK_qDXGyJToP53rKuUD4pT1Y_XfBh5WGXJIZUCOnqIDJWrWsRNa3pZSqrVvOS9YzA9nr7e60uR2xM-hSDmnPdH_H2bVe-Qstcp1Vbtph8XJnEPyPGWPSY-4VDgM4zNnpRlKuGK1lJp__Q95e3I5aQf5_63qfjzUbT31UyrppVEU31PIWKj8djtbkW9fbvL4neLUnyEzCy7SCOUZ98vnT_7Nn3_bZFzfYNcKQ1tEP8-aaxn2w3IIm-BgD9tcZM6o3Q3OVht4Mjd4NTZY9vdmfa9HVlIg_UVUU5g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298332560</pqid></control><display><type>article</type><title>Automated discrimination of brain pathological state attending to complex structural brain network properties: the shiverer mutant mouse case</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Iturria-Medina, Yasser ; Pérez Fernández, Alejandro ; Valdés Hernández, Pedro ; García Pentón, Lorna ; Canales-Rodríguez, Erick J ; Melie-Garcia, Lester ; Lage Castellanos, Agustin ; Ontivero Ortega, Marlis</creator><contributor>He, Yong</contributor><creatorcontrib>Iturria-Medina, Yasser ; Pérez Fernández, Alejandro ; Valdés Hernández, Pedro ; García Pentón, Lorna ; Canales-Rodríguez, Erick J ; Melie-Garcia, Lester ; Lage Castellanos, Agustin ; Ontivero Ortega, Marlis ; He, Yong</creatorcontrib><description>Neuroimaging classification procedures between normal and pathological subjects are sparse and highly dependent of an expert's clinical criterion. Here, we aimed to investigate whether possible brain structural network differences in the shiverer mouse mutant, a relevant animal model of myelin related diseases, can reflect intrinsic individual brain properties that allow the automatic discrimination between the shiverer and normal subjects. Common structural networks properties between shiverer (C3Fe.SWV Mbp(shi)/Mbp(shi), n = 6) and background control (C3HeB.FeJ, n = 6) mice are estimated and compared by means of three diffusion weighted MRI (DW-MRI) fiber tractography algorithms and a graph framework. Firstly, we found that brain networks of control group are significantly more clustered, modularized, efficient and optimized than those of the shiverer group, which presented significantly increased characteristic path length. These results are in line with previous structural/functional complex brain networks analysis that have revealed topologic differences and brain network randomization associated to specific states of human brain pathology. In addition, by means of network measures spatial representations and discrimination analysis, we show that it is possible to classify with high accuracy to which group each subject belongs, providing also a probability value of being a normal or shiverer subject as an individual anatomical classifier. The obtained correct predictions (e.g., around 91.6-100%) and clear spatial subdivisions between control and shiverer mice, suggest that there might exist specific network subspaces corresponding to specific brain disorders, supporting also the point of view that complex brain network analyses constitutes promising tools in the future creation of interpretable imaging biomarkers.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0019071</identifier><identifier>PMID: 21637753</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Alzheimer's disease ; Alzheimers disease ; Animals ; Automation ; Bioindicators ; Biology ; Biomarkers ; Brain ; Brain - pathology ; Brain - physiopathology ; Brain research ; Cluster Analysis ; Comparative analysis ; Diffusion Magnetic Resonance Imaging ; Discrimination ; Electroencephalography ; Laboratories ; Magnetic resonance imaging ; Medical imaging ; Mice ; Mice, Neurologic Mutants ; Multiple sclerosis ; Myelin ; Nerve Net - physiopathology ; Networks ; Neuroimaging ; Neurology ; Neurosciences ; Properties (attributes) ; Shivering - physiology ; Spatial analysis ; Spatial discrimination ; Structure-function relationships ; Studies ; Subdivisions ; Subspaces ; Topography</subject><ispartof>PloS one, 2011-05, Vol.6 (5), p.e19071-e19071</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Iturria-Medina et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Iturria-Medina et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-110393f6e43a02f818a921abd5d50c2d1bc5a42fc260d797981ac110b7c7ac803</citedby><cites>FETCH-LOGICAL-c691t-110393f6e43a02f818a921abd5d50c2d1bc5a42fc260d797981ac110b7c7ac803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1298332560/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1298332560?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21637753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>He, Yong</contributor><creatorcontrib>Iturria-Medina, Yasser</creatorcontrib><creatorcontrib>Pérez Fernández, Alejandro</creatorcontrib><creatorcontrib>Valdés Hernández, Pedro</creatorcontrib><creatorcontrib>García Pentón, Lorna</creatorcontrib><creatorcontrib>Canales-Rodríguez, Erick J</creatorcontrib><creatorcontrib>Melie-Garcia, Lester</creatorcontrib><creatorcontrib>Lage Castellanos, Agustin</creatorcontrib><creatorcontrib>Ontivero Ortega, Marlis</creatorcontrib><title>Automated discrimination of brain pathological state attending to complex structural brain network properties: the shiverer mutant mouse case</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Neuroimaging classification procedures between normal and pathological subjects are sparse and highly dependent of an expert's clinical criterion. Here, we aimed to investigate whether possible brain structural network differences in the shiverer mouse mutant, a relevant animal model of myelin related diseases, can reflect intrinsic individual brain properties that allow the automatic discrimination between the shiverer and normal subjects. Common structural networks properties between shiverer (C3Fe.SWV Mbp(shi)/Mbp(shi), n = 6) and background control (C3HeB.FeJ, n = 6) mice are estimated and compared by means of three diffusion weighted MRI (DW-MRI) fiber tractography algorithms and a graph framework. Firstly, we found that brain networks of control group are significantly more clustered, modularized, efficient and optimized than those of the shiverer group, which presented significantly increased characteristic path length. These results are in line with previous structural/functional complex brain networks analysis that have revealed topologic differences and brain network randomization associated to specific states of human brain pathology. In addition, by means of network measures spatial representations and discrimination analysis, we show that it is possible to classify with high accuracy to which group each subject belongs, providing also a probability value of being a normal or shiverer subject as an individual anatomical classifier. The obtained correct predictions (e.g., around 91.6-100%) and clear spatial subdivisions between control and shiverer mice, suggest that there might exist specific network subspaces corresponding to specific brain disorders, supporting also the point of view that complex brain network analyses constitutes promising tools in the future creation of interpretable imaging biomarkers.</description><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Alzheimers disease</subject><subject>Animals</subject><subject>Automation</subject><subject>Bioindicators</subject><subject>Biology</subject><subject>Biomarkers</subject><subject>Brain</subject><subject>Brain - pathology</subject><subject>Brain - physiopathology</subject><subject>Brain research</subject><subject>Cluster Analysis</subject><subject>Comparative analysis</subject><subject>Diffusion Magnetic Resonance Imaging</subject><subject>Discrimination</subject><subject>Electroencephalography</subject><subject>Laboratories</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Mice</subject><subject>Mice, Neurologic Mutants</subject><subject>Multiple sclerosis</subject><subject>Myelin</subject><subject>Nerve Net - physiopathology</subject><subject>Networks</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Properties (attributes)</subject><subject>Shivering - physiology</subject><subject>Spatial analysis</subject><subject>Spatial discrimination</subject><subject>Structure-function relationships</subject><subject>Studies</subject><subject>Subdivisions</subject><subject>Subspaces</subject><subject>Topography</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEolB4AwSWkEBc7OJDEsdcIFUVh0qVKnG6tSbOZNclsYPtlPIQvDNedlt1US9QLhLZ3_8784-nKJ4wumRCstfnfg4OhuXkHS4pZYpKdqd4wJTgi5pTcffG90HxMMZzSivR1PX94oCzWkhZiQfF76M5-RESdqSz0QQ7WgfJekd8T9oA1pEJ0toPfmUNDCSmzBJICV1n3YokT4wfpwEv81aYTZpDprZCh-mnD9_JFPyEIVmMb0haI4lre4EBAxnnBC6R0c8RiYGIj4p7PQwRH-_eh8XX9---HH9cnJ59ODk-Ol2YWrG0YIwKJfoaSwGU9w1rQHEGbVd1FTW8Y62poOS94TXtpJKqYWCyqJVGgmmoOCyebX2nwUe9SzJqxlUjBK_qDXGyJToP53rKuUD4pT1Y_XfBh5WGXJIZUCOnqIDJWrWsRNa3pZSqrVvOS9YzA9nr7e60uR2xM-hSDmnPdH_H2bVe-Qstcp1Vbtph8XJnEPyPGWPSY-4VDgM4zNnpRlKuGK1lJp__Q95e3I5aQf5_63qfjzUbT31UyrppVEU31PIWKj8djtbkW9fbvL4neLUnyEzCy7SCOUZ98vnT_7Nn3_bZFzfYNcKQ1tEP8-aaxn2w3IIm-BgD9tcZM6o3Q3OVht4Mjd4NTZY9vdmfa9HVlIg_UVUU5g</recordid><startdate>20110527</startdate><enddate>20110527</enddate><creator>Iturria-Medina, Yasser</creator><creator>Pérez Fernández, Alejandro</creator><creator>Valdés Hernández, Pedro</creator><creator>García Pentón, Lorna</creator><creator>Canales-Rodríguez, Erick J</creator><creator>Melie-Garcia, Lester</creator><creator>Lage Castellanos, Agustin</creator><creator>Ontivero Ortega, Marlis</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110527</creationdate><title>Automated discrimination of brain pathological state attending to complex structural brain network properties: the shiverer mutant mouse case</title><author>Iturria-Medina, Yasser ; Pérez Fernández, Alejandro ; Valdés Hernández, Pedro ; García Pentón, Lorna ; Canales-Rodríguez, Erick J ; Melie-Garcia, Lester ; Lage Castellanos, Agustin ; Ontivero Ortega, Marlis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-110393f6e43a02f818a921abd5d50c2d1bc5a42fc260d797981ac110b7c7ac803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Alzheimers disease</topic><topic>Animals</topic><topic>Automation</topic><topic>Bioindicators</topic><topic>Biology</topic><topic>Biomarkers</topic><topic>Brain</topic><topic>Brain - pathology</topic><topic>Brain - physiopathology</topic><topic>Brain research</topic><topic>Cluster Analysis</topic><topic>Comparative analysis</topic><topic>Diffusion Magnetic Resonance Imaging</topic><topic>Discrimination</topic><topic>Electroencephalography</topic><topic>Laboratories</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Mice</topic><topic>Mice, Neurologic Mutants</topic><topic>Multiple sclerosis</topic><topic>Myelin</topic><topic>Nerve Net - physiopathology</topic><topic>Networks</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Properties (attributes)</topic><topic>Shivering - physiology</topic><topic>Spatial analysis</topic><topic>Spatial discrimination</topic><topic>Structure-function relationships</topic><topic>Studies</topic><topic>Subdivisions</topic><topic>Subspaces</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iturria-Medina, Yasser</creatorcontrib><creatorcontrib>Pérez Fernández, Alejandro</creatorcontrib><creatorcontrib>Valdés Hernández, Pedro</creatorcontrib><creatorcontrib>García Pentón, Lorna</creatorcontrib><creatorcontrib>Canales-Rodríguez, Erick J</creatorcontrib><creatorcontrib>Melie-Garcia, Lester</creatorcontrib><creatorcontrib>Lage Castellanos, Agustin</creatorcontrib><creatorcontrib>Ontivero Ortega, Marlis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iturria-Medina, Yasser</au><au>Pérez Fernández, Alejandro</au><au>Valdés Hernández, Pedro</au><au>García Pentón, Lorna</au><au>Canales-Rodríguez, Erick J</au><au>Melie-Garcia, Lester</au><au>Lage Castellanos, Agustin</au><au>Ontivero Ortega, Marlis</au><au>He, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated discrimination of brain pathological state attending to complex structural brain network properties: the shiverer mutant mouse case</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-05-27</date><risdate>2011</risdate><volume>6</volume><issue>5</issue><spage>e19071</spage><epage>e19071</epage><pages>e19071-e19071</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Neuroimaging classification procedures between normal and pathological subjects are sparse and highly dependent of an expert's clinical criterion. Here, we aimed to investigate whether possible brain structural network differences in the shiverer mouse mutant, a relevant animal model of myelin related diseases, can reflect intrinsic individual brain properties that allow the automatic discrimination between the shiverer and normal subjects. Common structural networks properties between shiverer (C3Fe.SWV Mbp(shi)/Mbp(shi), n = 6) and background control (C3HeB.FeJ, n = 6) mice are estimated and compared by means of three diffusion weighted MRI (DW-MRI) fiber tractography algorithms and a graph framework. Firstly, we found that brain networks of control group are significantly more clustered, modularized, efficient and optimized than those of the shiverer group, which presented significantly increased characteristic path length. These results are in line with previous structural/functional complex brain networks analysis that have revealed topologic differences and brain network randomization associated to specific states of human brain pathology. In addition, by means of network measures spatial representations and discrimination analysis, we show that it is possible to classify with high accuracy to which group each subject belongs, providing also a probability value of being a normal or shiverer subject as an individual anatomical classifier. The obtained correct predictions (e.g., around 91.6-100%) and clear spatial subdivisions between control and shiverer mice, suggest that there might exist specific network subspaces corresponding to specific brain disorders, supporting also the point of view that complex brain network analyses constitutes promising tools in the future creation of interpretable imaging biomarkers.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21637753</pmid><doi>10.1371/journal.pone.0019071</doi><tpages>e19071</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-05, Vol.6 (5), p.e19071-e19071 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1298332560 |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Alzheimer's disease Alzheimers disease Animals Automation Bioindicators Biology Biomarkers Brain Brain - pathology Brain - physiopathology Brain research Cluster Analysis Comparative analysis Diffusion Magnetic Resonance Imaging Discrimination Electroencephalography Laboratories Magnetic resonance imaging Medical imaging Mice Mice, Neurologic Mutants Multiple sclerosis Myelin Nerve Net - physiopathology Networks Neuroimaging Neurology Neurosciences Properties (attributes) Shivering - physiology Spatial analysis Spatial discrimination Structure-function relationships Studies Subdivisions Subspaces Topography |
title | Automated discrimination of brain pathological state attending to complex structural brain network properties: the shiverer mutant mouse case |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20discrimination%20of%20brain%20pathological%20state%20attending%20to%20complex%20structural%20brain%20network%20properties:%20the%20shiverer%20mutant%20mouse%20case&rft.jtitle=PloS%20one&rft.au=Iturria-Medina,%20Yasser&rft.date=2011-05-27&rft.volume=6&rft.issue=5&rft.spage=e19071&rft.epage=e19071&rft.pages=e19071-e19071&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0019071&rft_dat=%3Cgale_plos_%3EA476889500%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c691t-110393f6e43a02f818a921abd5d50c2d1bc5a42fc260d797981ac110b7c7ac803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1298332560&rft_id=info:pmid/21637753&rft_galeid=A476889500&rfr_iscdi=true |