Loading…

Concentration independent modulation of local micromechanics in a fibrin gel

Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be mod...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2011-05, Vol.6 (5), p.e20201-e20201
Main Authors: Kotlarchyk, Maxwell A, Shreim, Samir G, Alvarez-Elizondo, Martha B, Estrada, Laura C, Singh, Rahul, Valdevit, Lorenzo, Kniazeva, Ekaterina, Gratton, Enrico, Putnam, Andrew J, Botvinick, Elliot L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be modulated independently from protein concentration by mechanically loading the ECM. We have developed a novel device for generating stiffness gradients in naturally derived ECMs, where stiffness is tuned by inducing strain, while local mechanical properties are directly determined by laser tweezers based active microrheology (AMR). Hydrogel substrates polymerized within 35 mm diameter Petri dishes are strained non-uniformly by the precise rotation of an embedded cylindrical post, and exhibit a position-dependent stiffness with little to no modulation of local mesh geometry. Here we present the device in the context of fibrin hydrogels. First AMR is used to directly measure local micromechanics in unstrained hydrogels of increasing fibrin concentration. Changes in stiffness are then mapped within our device, where fibrin concentration is held constant. Fluorescence confocal imaging and orbital particle tracking are used to quantify structural changes in fibrin on the micro and nano levels respectively. The micromechanical strain stiffening measured by microrheology is not accompanied by ECM microstructural changes under our applied loads, as measured by confocal microscopy. However, super-resolution orbital tracking reveals nanostructural straightening, lengthening, and reduced movement of fibrin fibers. Furthermore, we show that aortic smooth muscle cells cultured within our device are morphologically sensitive to the induced mechanical gradient. Our results demonstrate a powerful cell culture tool that can be used in the study of mechanical effects on cellular physiology in naturally derived 3D ECM tissues.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0020201