Loading…
Differential Inhibitory Effects of CysLT1 Receptor Antagonists on P2Y6 Receptor-Mediated Signaling and Ion Transport in Human Bronchial Epithelia
Background Cysteinyl leukotriene (CysLT) is one of the proinflammatory mediators released by the bronchi during inflammation. CysLTs exert their biological effects via specific G-protein-coupled receptors. CysLT1 receptor antagonists are available for clinical use for the treatment of asthma. Recent...
Saved in:
Published in: | PloS one 2011-07, Vol.6 (7), p.e22363 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background Cysteinyl leukotriene (CysLT) is one of the proinflammatory mediators released by the bronchi during inflammation. CysLTs exert their biological effects via specific G-protein-coupled receptors. CysLT1 receptor antagonists are available for clinical use for the treatment of asthma. Recently, crosstalk between CysLT1 and P2Y6 receptors has been delineated. P2Y receptors are expressed in apical and/or basolateral membranes of virtually all polarized epithelia to control the transport of fluid and electrolytes. Previous research suggests that CysLT1 receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors. However, the detailed molecular mechanism underlying the inhibition remains unresolved. Methodology/Principal Findings In this study, western blot analysis confirmed that both CysLT1 and P2Y6 receptors were expressed in the human bronchial epithelial cell line 16HBE14o-. All three CysLT1 antagonists inhibited the uridine diphosphate (UDP)-evoked ISC, but only montelukast inhibited the UDP-evoked [Ca2+]i increase. In the presence of forskolin or 8-bromoadenosine 3′5′ cyclic monophosphate (8-Br-cAMP), the UDP-induced ISC was potentiated but was reduced by pranlukast and zafirlukast but not montelukast. Pranlukast inhibited the UDP-evoked ISC potentiated by an Epac activator, 8-(4-Chlorophenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphate (8-CPT-2′-O-Me-cAMP), while montelukast and zafirlukast had no such effect. Pranlukast inhibited the real-time increase in cAMP changes activated by 8-CPT-2′-O-Me-cAMP as monitored by fluorescence resonance energy transfer imaging. Zafirlukast inhibited the UDP-induced ISC potentiated by N6- Phenyladenosine- 3′, 5′- cyclic monophosphorothioate, Sp- isomer (Sp-6-Phe-cAMP; a PKA activator) and UDP-activated PKA activity. Conclusions/Significance In summary, our data strongly suggest for the first time that in human airway epithelia, the three specific CysLT1 receptor antagonists exert differential inhibitory effects on P2Y6 receptor-coupled Ca2+ signaling pathways and the potentiating effect on ISC mediated by cAMP and Epac, leading to the modulation of ion transport activities across the epithelia. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0022363 |