Loading…
Integrated expression profiling and genome-wide analysis of ChREBP targets reveals the dual role for ChREBP in glucose-regulated gene expression
The carbohydrate response element binding protein (ChREBP), a basic helix-loop-helix/leucine zipper transcription factor, plays a critical role in the control of lipogenesis in the liver. To identify the direct targets of ChREBP on a genome-wide scale and provide more insight into the mechanism by w...
Saved in:
Published in: | PloS one 2011-07, Vol.6 (7), p.e22544 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c757t-d16151ab2d83a9ca45be3d1b1d76b6747f4c6cb695e77d8a939e8171c97930683 |
---|---|
cites | cdi_FETCH-LOGICAL-c757t-d16151ab2d83a9ca45be3d1b1d76b6747f4c6cb695e77d8a939e8171c97930683 |
container_end_page | |
container_issue | 7 |
container_start_page | e22544 |
container_title | PloS one |
container_volume | 6 |
creator | Jeong, Yun-Seung Kim, Deokhoon Lee, Yong Seok Kim, Ha-Jung Han, Jung-Youn Im, Seung-Soon Chong, Hansook Kim Kwon, Je-Keun Cho, Yun-Ho Kim, Woo Kyung Osborne, Timothy F Horton, Jay D Jun, Hee-Sook Ahn, Yong-Ho Ahn, Sung-Min Cha, Ji-Young |
description | The carbohydrate response element binding protein (ChREBP), a basic helix-loop-helix/leucine zipper transcription factor, plays a critical role in the control of lipogenesis in the liver. To identify the direct targets of ChREBP on a genome-wide scale and provide more insight into the mechanism by which ChREBP regulates glucose-responsive gene expression, we performed chromatin immunoprecipitation-sequencing and gene expression analysis. We identified 1153 ChREBP binding sites and 783 target genes using the chromatin from HepG2, a human hepatocellular carcinoma cell line. A motif search revealed a refined consensus sequence (CABGTG-nnCnG-nGnSTG) to better represent critical elements of a functional ChREBP binding sequence. Gene ontology analysis shows that ChREBP target genes are particularly associated with lipid, fatty acid and steroid metabolism. In addition, other functional gene clusters related to transport, development and cell motility are significantly enriched. Gene set enrichment analysis reveals that ChREBP target genes are highly correlated with genes regulated by high glucose, providing a functional relevance to the genome-wide binding study. Furthermore, we have demonstrated that ChREBP may function as a transcriptional repressor as well as an activator. |
doi_str_mv | 10.1371/journal.pone.0022544 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1306248466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476884356</galeid><doaj_id>oai_doaj_org_article_f1c52acef876433e813933db620b2f52</doaj_id><sourcerecordid>A476884356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c757t-d16151ab2d83a9ca45be3d1b1d76b6747f4c6cb695e77d8a939e8171c97930683</originalsourceid><addsrcrecordid>eNqNk9-K1DAUxoso7rr6BqIBQfCiY9OkSXsjrMOqAwsr65_bkCannSyZZjZJ19238JHN7MwsU1CQXrTJ-Z3vHL6ek2UvcTHDhOP3V270g7SztRtgVhRlWVH6KDvGDSlzVhbk8cH3UfYshKuiqEjN2NPsqMQ1xozg4-z3YojQexlBI7hdewjBuAGtveuMNUOP5KBRD4NbQf7LaEhnae-CCch1aL68PPv4FUXpe4gBebgBaQOKS0B6lBZ5ZwF1zu9BM6DejsoFyD30o72vmsThoPTz7EmXRODF7n2S_fh09n3-JT-_-LyYn57nilc85hozXGHZlromslGSVi0QjVusOWsZp7yjiqmWNRVwrmvZkAZqzLFqeEMKVpOT7PVWd21dEDszg8ApWNKaMpaIxZbQTl6JtTcr6e-Ek0bcXzjfC-mjURZEh1VVSgVdzRklJFUiDSG6Td63ZVeVSevDrtrYrkArGKKXdiI6jQxmKXp3IwimuOCbZt7sBLy7HiHEf7S8o3qZujJD55KYWpmgxCnlrK4pqTbU7C9UejSsjErjlH49TBPeTRISE-E29nIMQSy-Xf4_e_Fzyr49YJdpeOIyODvGNAdhCtItqLwLwUP34BwuxGYb9m6IzTaI3TaktFeHrj8k7cef_AFMIQZI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1306248466</pqid></control><display><type>article</type><title>Integrated expression profiling and genome-wide analysis of ChREBP targets reveals the dual role for ChREBP in glucose-regulated gene expression</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Jeong, Yun-Seung ; Kim, Deokhoon ; Lee, Yong Seok ; Kim, Ha-Jung ; Han, Jung-Youn ; Im, Seung-Soon ; Chong, Hansook Kim ; Kwon, Je-Keun ; Cho, Yun-Ho ; Kim, Woo Kyung ; Osborne, Timothy F ; Horton, Jay D ; Jun, Hee-Sook ; Ahn, Yong-Ho ; Ahn, Sung-Min ; Cha, Ji-Young</creator><contributor>Ahuja, Sunil K.</contributor><creatorcontrib>Jeong, Yun-Seung ; Kim, Deokhoon ; Lee, Yong Seok ; Kim, Ha-Jung ; Han, Jung-Youn ; Im, Seung-Soon ; Chong, Hansook Kim ; Kwon, Je-Keun ; Cho, Yun-Ho ; Kim, Woo Kyung ; Osborne, Timothy F ; Horton, Jay D ; Jun, Hee-Sook ; Ahn, Yong-Ho ; Ahn, Sung-Min ; Cha, Ji-Young ; Ahuja, Sunil K.</creatorcontrib><description>The carbohydrate response element binding protein (ChREBP), a basic helix-loop-helix/leucine zipper transcription factor, plays a critical role in the control of lipogenesis in the liver. To identify the direct targets of ChREBP on a genome-wide scale and provide more insight into the mechanism by which ChREBP regulates glucose-responsive gene expression, we performed chromatin immunoprecipitation-sequencing and gene expression analysis. We identified 1153 ChREBP binding sites and 783 target genes using the chromatin from HepG2, a human hepatocellular carcinoma cell line. A motif search revealed a refined consensus sequence (CABGTG-nnCnG-nGnSTG) to better represent critical elements of a functional ChREBP binding sequence. Gene ontology analysis shows that ChREBP target genes are particularly associated with lipid, fatty acid and steroid metabolism. In addition, other functional gene clusters related to transport, development and cell motility are significantly enriched. Gene set enrichment analysis reveals that ChREBP target genes are highly correlated with genes regulated by high glucose, providing a functional relevance to the genome-wide binding study. Furthermore, we have demonstrated that ChREBP may function as a transcriptional repressor as well as an activator.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0022544</identifier><identifier>PMID: 21811631</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenoviruses ; Analysis ; Base Sequence ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism ; Bayesian analysis ; Binding Sites ; Biochemistry ; Biology ; Cancer ; Carbohydrates ; Cell growth ; Chromatin ; Chromatin Immunoprecipitation ; Conserved sequence ; Databases, Genetic ; Deoxyribonucleic acid ; Diabetes ; DNA ; DNA - metabolism ; E coli ; Escherichia coli ; Experiments ; Fatty acids ; Gene clusters ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation - drug effects ; Gene sequencing ; Gene set enrichment analysis ; Genes ; Genetic Loci - genetics ; Genome, Human - genetics ; Genomes ; Genomics ; Glucose ; Glucose - pharmacology ; HEK293 Cells ; Helix-loop-helix proteins ; Helix-loop-helix proteins (basic) ; Hep G2 Cells ; Hepatocellular carcinoma ; Humans ; Immunoprecipitation ; Kinases ; Knowledge representation ; Leucine ; Leucine zipper proteins ; Lipogenesis ; Lipogenesis - drug effects ; Lipogenesis - genetics ; Liver ; Liver - drug effects ; Liver - metabolism ; Medical research ; Medicine ; Metabolism ; Molecular biology ; Molecular Sequence Data ; Polymerase chain reaction ; Protein binding ; Protein Binding - drug effects ; Proteins ; Reproducibility of Results ; Rodents ; Science ; Signal Transduction - drug effects ; Signal Transduction - genetics ; Sterols ; Target recognition ; Transcription factors ; Variance analysis</subject><ispartof>PloS one, 2011-07, Vol.6 (7), p.e22544</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Jeong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Jeong et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c757t-d16151ab2d83a9ca45be3d1b1d76b6747f4c6cb695e77d8a939e8171c97930683</citedby><cites>FETCH-LOGICAL-c757t-d16151ab2d83a9ca45be3d1b1d76b6747f4c6cb695e77d8a939e8171c97930683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1306248466/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1306248466?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21811631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ahuja, Sunil K.</contributor><creatorcontrib>Jeong, Yun-Seung</creatorcontrib><creatorcontrib>Kim, Deokhoon</creatorcontrib><creatorcontrib>Lee, Yong Seok</creatorcontrib><creatorcontrib>Kim, Ha-Jung</creatorcontrib><creatorcontrib>Han, Jung-Youn</creatorcontrib><creatorcontrib>Im, Seung-Soon</creatorcontrib><creatorcontrib>Chong, Hansook Kim</creatorcontrib><creatorcontrib>Kwon, Je-Keun</creatorcontrib><creatorcontrib>Cho, Yun-Ho</creatorcontrib><creatorcontrib>Kim, Woo Kyung</creatorcontrib><creatorcontrib>Osborne, Timothy F</creatorcontrib><creatorcontrib>Horton, Jay D</creatorcontrib><creatorcontrib>Jun, Hee-Sook</creatorcontrib><creatorcontrib>Ahn, Yong-Ho</creatorcontrib><creatorcontrib>Ahn, Sung-Min</creatorcontrib><creatorcontrib>Cha, Ji-Young</creatorcontrib><title>Integrated expression profiling and genome-wide analysis of ChREBP targets reveals the dual role for ChREBP in glucose-regulated gene expression</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The carbohydrate response element binding protein (ChREBP), a basic helix-loop-helix/leucine zipper transcription factor, plays a critical role in the control of lipogenesis in the liver. To identify the direct targets of ChREBP on a genome-wide scale and provide more insight into the mechanism by which ChREBP regulates glucose-responsive gene expression, we performed chromatin immunoprecipitation-sequencing and gene expression analysis. We identified 1153 ChREBP binding sites and 783 target genes using the chromatin from HepG2, a human hepatocellular carcinoma cell line. A motif search revealed a refined consensus sequence (CABGTG-nnCnG-nGnSTG) to better represent critical elements of a functional ChREBP binding sequence. Gene ontology analysis shows that ChREBP target genes are particularly associated with lipid, fatty acid and steroid metabolism. In addition, other functional gene clusters related to transport, development and cell motility are significantly enriched. Gene set enrichment analysis reveals that ChREBP target genes are highly correlated with genes regulated by high glucose, providing a functional relevance to the genome-wide binding study. Furthermore, we have demonstrated that ChREBP may function as a transcriptional repressor as well as an activator.</description><subject>Adenoviruses</subject><subject>Analysis</subject><subject>Base Sequence</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</subject><subject>Bayesian analysis</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Cancer</subject><subject>Carbohydrates</subject><subject>Cell growth</subject><subject>Chromatin</subject><subject>Chromatin Immunoprecipitation</subject><subject>Conserved sequence</subject><subject>Databases, Genetic</subject><subject>Deoxyribonucleic acid</subject><subject>Diabetes</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Experiments</subject><subject>Fatty acids</subject><subject>Gene clusters</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene sequencing</subject><subject>Gene set enrichment analysis</subject><subject>Genes</subject><subject>Genetic Loci - genetics</subject><subject>Genome, Human - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Glucose</subject><subject>Glucose - pharmacology</subject><subject>HEK293 Cells</subject><subject>Helix-loop-helix proteins</subject><subject>Helix-loop-helix proteins (basic)</subject><subject>Hep G2 Cells</subject><subject>Hepatocellular carcinoma</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Kinases</subject><subject>Knowledge representation</subject><subject>Leucine</subject><subject>Leucine zipper proteins</subject><subject>Lipogenesis</subject><subject>Lipogenesis - drug effects</subject><subject>Lipogenesis - genetics</subject><subject>Liver</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Metabolism</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Polymerase chain reaction</subject><subject>Protein binding</subject><subject>Protein Binding - drug effects</subject><subject>Proteins</subject><subject>Reproducibility of Results</subject><subject>Rodents</subject><subject>Science</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>Sterols</subject><subject>Target recognition</subject><subject>Transcription factors</subject><subject>Variance analysis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-K1DAUxoso7rr6BqIBQfCiY9OkSXsjrMOqAwsr65_bkCannSyZZjZJ19238JHN7MwsU1CQXrTJ-Z3vHL6ek2UvcTHDhOP3V270g7SztRtgVhRlWVH6KDvGDSlzVhbk8cH3UfYshKuiqEjN2NPsqMQ1xozg4-z3YojQexlBI7hdewjBuAGtveuMNUOP5KBRD4NbQf7LaEhnae-CCch1aL68PPv4FUXpe4gBebgBaQOKS0B6lBZ5ZwF1zu9BM6DejsoFyD30o72vmsThoPTz7EmXRODF7n2S_fh09n3-JT-_-LyYn57nilc85hozXGHZlromslGSVi0QjVusOWsZp7yjiqmWNRVwrmvZkAZqzLFqeEMKVpOT7PVWd21dEDszg8ApWNKaMpaIxZbQTl6JtTcr6e-Ek0bcXzjfC-mjURZEh1VVSgVdzRklJFUiDSG6Td63ZVeVSevDrtrYrkArGKKXdiI6jQxmKXp3IwimuOCbZt7sBLy7HiHEf7S8o3qZujJD55KYWpmgxCnlrK4pqTbU7C9UejSsjErjlH49TBPeTRISE-E29nIMQSy-Xf4_e_Fzyr49YJdpeOIyODvGNAdhCtItqLwLwUP34BwuxGYb9m6IzTaI3TaktFeHrj8k7cef_AFMIQZI</recordid><startdate>20110721</startdate><enddate>20110721</enddate><creator>Jeong, Yun-Seung</creator><creator>Kim, Deokhoon</creator><creator>Lee, Yong Seok</creator><creator>Kim, Ha-Jung</creator><creator>Han, Jung-Youn</creator><creator>Im, Seung-Soon</creator><creator>Chong, Hansook Kim</creator><creator>Kwon, Je-Keun</creator><creator>Cho, Yun-Ho</creator><creator>Kim, Woo Kyung</creator><creator>Osborne, Timothy F</creator><creator>Horton, Jay D</creator><creator>Jun, Hee-Sook</creator><creator>Ahn, Yong-Ho</creator><creator>Ahn, Sung-Min</creator><creator>Cha, Ji-Young</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110721</creationdate><title>Integrated expression profiling and genome-wide analysis of ChREBP targets reveals the dual role for ChREBP in glucose-regulated gene expression</title><author>Jeong, Yun-Seung ; Kim, Deokhoon ; Lee, Yong Seok ; Kim, Ha-Jung ; Han, Jung-Youn ; Im, Seung-Soon ; Chong, Hansook Kim ; Kwon, Je-Keun ; Cho, Yun-Ho ; Kim, Woo Kyung ; Osborne, Timothy F ; Horton, Jay D ; Jun, Hee-Sook ; Ahn, Yong-Ho ; Ahn, Sung-Min ; Cha, Ji-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c757t-d16151ab2d83a9ca45be3d1b1d76b6747f4c6cb695e77d8a939e8171c97930683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adenoviruses</topic><topic>Analysis</topic><topic>Base Sequence</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</topic><topic>Bayesian analysis</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Cancer</topic><topic>Carbohydrates</topic><topic>Cell growth</topic><topic>Chromatin</topic><topic>Chromatin Immunoprecipitation</topic><topic>Conserved sequence</topic><topic>Databases, Genetic</topic><topic>Deoxyribonucleic acid</topic><topic>Diabetes</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Experiments</topic><topic>Fatty acids</topic><topic>Gene clusters</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene sequencing</topic><topic>Gene set enrichment analysis</topic><topic>Genes</topic><topic>Genetic Loci - genetics</topic><topic>Genome, Human - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Glucose</topic><topic>Glucose - pharmacology</topic><topic>HEK293 Cells</topic><topic>Helix-loop-helix proteins</topic><topic>Helix-loop-helix proteins (basic)</topic><topic>Hep G2 Cells</topic><topic>Hepatocellular carcinoma</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Kinases</topic><topic>Knowledge representation</topic><topic>Leucine</topic><topic>Leucine zipper proteins</topic><topic>Lipogenesis</topic><topic>Lipogenesis - drug effects</topic><topic>Lipogenesis - genetics</topic><topic>Liver</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Metabolism</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Polymerase chain reaction</topic><topic>Protein binding</topic><topic>Protein Binding - drug effects</topic><topic>Proteins</topic><topic>Reproducibility of Results</topic><topic>Rodents</topic><topic>Science</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>Sterols</topic><topic>Target recognition</topic><topic>Transcription factors</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Yun-Seung</creatorcontrib><creatorcontrib>Kim, Deokhoon</creatorcontrib><creatorcontrib>Lee, Yong Seok</creatorcontrib><creatorcontrib>Kim, Ha-Jung</creatorcontrib><creatorcontrib>Han, Jung-Youn</creatorcontrib><creatorcontrib>Im, Seung-Soon</creatorcontrib><creatorcontrib>Chong, Hansook Kim</creatorcontrib><creatorcontrib>Kwon, Je-Keun</creatorcontrib><creatorcontrib>Cho, Yun-Ho</creatorcontrib><creatorcontrib>Kim, Woo Kyung</creatorcontrib><creatorcontrib>Osborne, Timothy F</creatorcontrib><creatorcontrib>Horton, Jay D</creatorcontrib><creatorcontrib>Jun, Hee-Sook</creatorcontrib><creatorcontrib>Ahn, Yong-Ho</creatorcontrib><creatorcontrib>Ahn, Sung-Min</creatorcontrib><creatorcontrib>Cha, Ji-Young</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection (ProQuest Medical & Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (ProQuest Medical & Health Databases)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Yun-Seung</au><au>Kim, Deokhoon</au><au>Lee, Yong Seok</au><au>Kim, Ha-Jung</au><au>Han, Jung-Youn</au><au>Im, Seung-Soon</au><au>Chong, Hansook Kim</au><au>Kwon, Je-Keun</au><au>Cho, Yun-Ho</au><au>Kim, Woo Kyung</au><au>Osborne, Timothy F</au><au>Horton, Jay D</au><au>Jun, Hee-Sook</au><au>Ahn, Yong-Ho</au><au>Ahn, Sung-Min</au><au>Cha, Ji-Young</au><au>Ahuja, Sunil K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated expression profiling and genome-wide analysis of ChREBP targets reveals the dual role for ChREBP in glucose-regulated gene expression</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-07-21</date><risdate>2011</risdate><volume>6</volume><issue>7</issue><spage>e22544</spage><pages>e22544-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The carbohydrate response element binding protein (ChREBP), a basic helix-loop-helix/leucine zipper transcription factor, plays a critical role in the control of lipogenesis in the liver. To identify the direct targets of ChREBP on a genome-wide scale and provide more insight into the mechanism by which ChREBP regulates glucose-responsive gene expression, we performed chromatin immunoprecipitation-sequencing and gene expression analysis. We identified 1153 ChREBP binding sites and 783 target genes using the chromatin from HepG2, a human hepatocellular carcinoma cell line. A motif search revealed a refined consensus sequence (CABGTG-nnCnG-nGnSTG) to better represent critical elements of a functional ChREBP binding sequence. Gene ontology analysis shows that ChREBP target genes are particularly associated with lipid, fatty acid and steroid metabolism. In addition, other functional gene clusters related to transport, development and cell motility are significantly enriched. Gene set enrichment analysis reveals that ChREBP target genes are highly correlated with genes regulated by high glucose, providing a functional relevance to the genome-wide binding study. Furthermore, we have demonstrated that ChREBP may function as a transcriptional repressor as well as an activator.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21811631</pmid><doi>10.1371/journal.pone.0022544</doi><tpages>e22544</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-07, Vol.6 (7), p.e22544 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1306248466 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Adenoviruses Analysis Base Sequence Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism Bayesian analysis Binding Sites Biochemistry Biology Cancer Carbohydrates Cell growth Chromatin Chromatin Immunoprecipitation Conserved sequence Databases, Genetic Deoxyribonucleic acid Diabetes DNA DNA - metabolism E coli Escherichia coli Experiments Fatty acids Gene clusters Gene expression Gene Expression Profiling Gene Expression Regulation - drug effects Gene sequencing Gene set enrichment analysis Genes Genetic Loci - genetics Genome, Human - genetics Genomes Genomics Glucose Glucose - pharmacology HEK293 Cells Helix-loop-helix proteins Helix-loop-helix proteins (basic) Hep G2 Cells Hepatocellular carcinoma Humans Immunoprecipitation Kinases Knowledge representation Leucine Leucine zipper proteins Lipogenesis Lipogenesis - drug effects Lipogenesis - genetics Liver Liver - drug effects Liver - metabolism Medical research Medicine Metabolism Molecular biology Molecular Sequence Data Polymerase chain reaction Protein binding Protein Binding - drug effects Proteins Reproducibility of Results Rodents Science Signal Transduction - drug effects Signal Transduction - genetics Sterols Target recognition Transcription factors Variance analysis |
title | Integrated expression profiling and genome-wide analysis of ChREBP targets reveals the dual role for ChREBP in glucose-regulated gene expression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A13%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20expression%20profiling%20and%20genome-wide%20analysis%20of%20ChREBP%20targets%20reveals%20the%20dual%20role%20for%20ChREBP%20in%20glucose-regulated%20gene%20expression&rft.jtitle=PloS%20one&rft.au=Jeong,%20Yun-Seung&rft.date=2011-07-21&rft.volume=6&rft.issue=7&rft.spage=e22544&rft.pages=e22544-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0022544&rft_dat=%3Cgale_plos_%3EA476884356%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c757t-d16151ab2d83a9ca45be3d1b1d76b6747f4c6cb695e77d8a939e8171c97930683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1306248466&rft_id=info:pmid/21811631&rft_galeid=A476884356&rfr_iscdi=true |