Loading…
Drosophila Ten-m and filamin affect motor neuron growth cone guidance
The Drosophila Ten-m (also called Tenascin-major, or odd Oz (odz)) gene has been associated with a pair-rule phenotype. We identified and characterized new alleles of Drosophila Ten-m to establish that this gene is not responsible for segmentation defects but rather causes defects in motor neuron ax...
Saved in:
Published in: | PloS one 2011-08, Vol.6 (8), p.e22956-e22956 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Drosophila Ten-m (also called Tenascin-major, or odd Oz (odz)) gene has been associated with a pair-rule phenotype. We identified and characterized new alleles of Drosophila Ten-m to establish that this gene is not responsible for segmentation defects but rather causes defects in motor neuron axon routing. In Ten-m mutants the inter-segmental nerve (ISN) often crosses segment boundaries and fasciculates with the ISN in the adjacent segment. Ten-m is expressed in the central nervous system and epidermal stripes during the stages when the growth cones of the neurons that form the ISN navigate to their targets. Over-expression of Ten-m in epidermal cells also leads to ISN misrouting. We also found that Filamin, an actin binding protein, physically interacts with the Ten-m protein. Mutations in cheerio, which encodes Filamin, cause defects in motor neuron axon routing like those of Ten-m. During embryonic development, the expression of Filamin and Ten-m partially overlap in ectodermal cells. These results suggest that Ten-m and Filamin in epidermal cells might together influence growth cone progression. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0022956 |