Loading…

Structural differences between the Streptococcus agalactiae housekeeping and pilus-specific sortases: SrtA and SrtC1

The assembly of pili on the cell wall of Gram-positive bacteria requires transpeptidase enzymes called sortases. In Streptococcus agalactiae, the PI-1 pilus island of strain 2603V/R encodes two pilus-specific sortases (SrtC1 and SrtC2) and three pilins (GBS80, GBS52 and GBS104). Although either pilu...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2011-08, Vol.6 (8), p.e22995-e22995
Main Authors: Khare, B, Krishnan, V, Rajashankar, K R, I-Hsiu, H, Xin, M, Ton-That, H, Narayana, S V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c718t-9abe0bdd8771985cf07721929db734dae6d67b0f942ef52a9747c491dd173b823
cites cdi_FETCH-LOGICAL-c718t-9abe0bdd8771985cf07721929db734dae6d67b0f942ef52a9747c491dd173b823
container_end_page e22995
container_issue 8
container_start_page e22995
container_title PloS one
container_volume 6
creator Khare, B
Krishnan, V
Rajashankar, K R
I-Hsiu, H
Xin, M
Ton-That, H
Narayana, S V
description The assembly of pili on the cell wall of Gram-positive bacteria requires transpeptidase enzymes called sortases. In Streptococcus agalactiae, the PI-1 pilus island of strain 2603V/R encodes two pilus-specific sortases (SrtC1 and SrtC2) and three pilins (GBS80, GBS52 and GBS104). Although either pilus-specific sortase is sufficient for the polymerization of the major pilin, GBS80, incorporation of the minor pilins GBS52 and GBS104 into the pilus structure requires SrtC1 and SrtC2, respectively. The S. agalactiae housekeeping sortase, SrtA, whose gene is present at a different location and does not catalyze pilus polymerization, was shown to be involved in cell wall anchoring of pilus polymers. To understand the structural basis of sortases involved in such diverse functions, we determined the crystal structures of S. agalactiae SrtC1 and SrtA. Both enzymes are made of an eight-stranded beta-barrel core with variations in their active site architecture. SrtA exhibits a catalytic triad arrangement similar to that in Streptococcus pyogenes SrtA but different from that in Staphylococcus aureus SrtA. In contrast, the SrtC1 enzyme contains an N-terminal helical domain and a 'lid' in its putative active site, which is similar to that seen in Streptococcus pneumoniae pilus-specific sortases, although with subtle differences in positioning and composition. To understand the effect of such differences on substrate recognition, we have also determined the crystal structure of a SrtC1 mutant, in which the conserved DP(W/F/Y) motif was replaced with the sorting signal motif of GBS80, IPNTG. By comparing the structures of WT wild type SrtA and SrtC1 and the 'lid' mutant of SrtC1, we propose that structural elements within the active site and the lid may be important for defining the role of specific sortase in pili biogenesis.
doi_str_mv 10.1371/journal.pone.0022995
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1307799086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476881319</galeid><doaj_id>oai_doaj_org_article_5bb32936facf406895e5c0b0898d3005</doaj_id><sourcerecordid>A476881319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c718t-9abe0bdd8771985cf07721929db734dae6d67b0f942ef52a9747c491dd173b823</originalsourceid><addsrcrecordid>eNqNk12PEyEUhidG467Vf2B0EhONF60wzAzghUnT-NFkk02seksYOLTU6TAC48e_l7azm9bsheECcnjOe-CFk2VPMZphQvGbrRt8J9tZ7zqYIVQUnFf3skvMSTGtC0Tun6wvskchbBGqCKvrh9lFgTkuKlZfZnEV_aDi4GWba2sMeOgUhLyB-Augy-MG8oRAH51ySg0hl2vZShWthHzjhgDfAXrbrXPZ6by37RCmoQdljVV5cD7KAOFtvvJxfiDSYoEfZw-MbAM8GedJ9vXD-y-LT9Or64_LxfxqqihmccplA6jRmlGKOauUQZSmkxdcN5SUWkKta9ogw8sCTFVITkuqSo61xpQ0rCCT7PlRt29dEKNhQWCShDhHrE7E8khoJ7ei93Yn_R_hpBWHgPNrIX20qgVRNQ0pOKmNVKZENeMVVAo1iHGmyd7aSfZurDY0O9AKuphcPRM93-nsRqzdT0FwXaOqTAKvRgHvfgwQotjZoKBtZQfJacEYL0tWHcgX_5B3X26k0ouBsJ1xqazaa4p5SWvGMEk_ZJLN7qDS0LCzKn0uY1P8LOH1WUJiIvyOazmEIJarz__PXn87Z1-esBuQbdwE1w7Rui6cg-URVN6F4MHceoyR2PfGjRti3xti7I2U9uz0fW6TbpqB_AXIjQpz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1307799086</pqid></control><display><type>article</type><title>Structural differences between the Streptococcus agalactiae housekeeping and pilus-specific sortases: SrtA and SrtC1</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><creator>Khare, B ; Krishnan, V ; Rajashankar, K R ; I-Hsiu, H ; Xin, M ; Ton-That, H ; Narayana, S V</creator><contributor>May, Robin Charles</contributor><creatorcontrib>Khare, B ; Krishnan, V ; Rajashankar, K R ; I-Hsiu, H ; Xin, M ; Ton-That, H ; Narayana, S V ; May, Robin Charles</creatorcontrib><description>The assembly of pili on the cell wall of Gram-positive bacteria requires transpeptidase enzymes called sortases. In Streptococcus agalactiae, the PI-1 pilus island of strain 2603V/R encodes two pilus-specific sortases (SrtC1 and SrtC2) and three pilins (GBS80, GBS52 and GBS104). Although either pilus-specific sortase is sufficient for the polymerization of the major pilin, GBS80, incorporation of the minor pilins GBS52 and GBS104 into the pilus structure requires SrtC1 and SrtC2, respectively. The S. agalactiae housekeeping sortase, SrtA, whose gene is present at a different location and does not catalyze pilus polymerization, was shown to be involved in cell wall anchoring of pilus polymers. To understand the structural basis of sortases involved in such diverse functions, we determined the crystal structures of S. agalactiae SrtC1 and SrtA. Both enzymes are made of an eight-stranded beta-barrel core with variations in their active site architecture. SrtA exhibits a catalytic triad arrangement similar to that in Streptococcus pyogenes SrtA but different from that in Staphylococcus aureus SrtA. In contrast, the SrtC1 enzyme contains an N-terminal helical domain and a 'lid' in its putative active site, which is similar to that seen in Streptococcus pneumoniae pilus-specific sortases, although with subtle differences in positioning and composition. To understand the effect of such differences on substrate recognition, we have also determined the crystal structure of a SrtC1 mutant, in which the conserved DP(W/F/Y) motif was replaced with the sorting signal motif of GBS80, IPNTG. By comparing the structures of WT wild type SrtA and SrtC1 and the 'lid' mutant of SrtC1, we propose that structural elements within the active site and the lid may be important for defining the role of specific sortase in pili biogenesis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0022995</identifier><identifier>PMID: 21912586</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Aminoacyltransferases - chemistry ; Aminoacyltransferases - genetics ; Aminoacyltransferases - metabolism ; Anchoring ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biology ; Catalysis ; Catalytic Domain ; Cell walls ; Composition effects ; Crystal structure ; Crystallography ; Crystallography, X-Ray ; Cysteine Endopeptidases - chemistry ; Cysteine Endopeptidases - genetics ; Cysteine Endopeptidases - metabolism ; Enzyme Stability ; Enzymes ; Fimbriae, Bacterial - enzymology ; Fimbriae, Bacterial - genetics ; Genes, Essential ; Gram-positive bacteria ; Methionine ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Organ Specificity ; Pathogens ; Peptidyl Transferases - chemistry ; Peptidyl Transferases - genetics ; Peptidyl Transferases - metabolism ; Pili ; Pilin ; Pneumonia ; Polyimide resins ; Polymerization ; Polymers ; Proteins ; Science ; Sortase ; Staphylococcus aureus ; Streptococcus ; Streptococcus agalactiae ; Streptococcus agalactiae - cytology ; Streptococcus agalactiae - enzymology ; Streptococcus agalactiae - genetics ; Streptococcus infections ; Structural members ; Structure-Activity Relationship ; Substrates ; User interface</subject><ispartof>PloS one, 2011-08, Vol.6 (8), p.e22995-e22995</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Khare et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Khare et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c718t-9abe0bdd8771985cf07721929db734dae6d67b0f942ef52a9747c491dd173b823</citedby><cites>FETCH-LOGICAL-c718t-9abe0bdd8771985cf07721929db734dae6d67b0f942ef52a9747c491dd173b823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1307799086/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1307799086?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21912586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>May, Robin Charles</contributor><creatorcontrib>Khare, B</creatorcontrib><creatorcontrib>Krishnan, V</creatorcontrib><creatorcontrib>Rajashankar, K R</creatorcontrib><creatorcontrib>I-Hsiu, H</creatorcontrib><creatorcontrib>Xin, M</creatorcontrib><creatorcontrib>Ton-That, H</creatorcontrib><creatorcontrib>Narayana, S V</creatorcontrib><title>Structural differences between the Streptococcus agalactiae housekeeping and pilus-specific sortases: SrtA and SrtC1</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The assembly of pili on the cell wall of Gram-positive bacteria requires transpeptidase enzymes called sortases. In Streptococcus agalactiae, the PI-1 pilus island of strain 2603V/R encodes two pilus-specific sortases (SrtC1 and SrtC2) and three pilins (GBS80, GBS52 and GBS104). Although either pilus-specific sortase is sufficient for the polymerization of the major pilin, GBS80, incorporation of the minor pilins GBS52 and GBS104 into the pilus structure requires SrtC1 and SrtC2, respectively. The S. agalactiae housekeeping sortase, SrtA, whose gene is present at a different location and does not catalyze pilus polymerization, was shown to be involved in cell wall anchoring of pilus polymers. To understand the structural basis of sortases involved in such diverse functions, we determined the crystal structures of S. agalactiae SrtC1 and SrtA. Both enzymes are made of an eight-stranded beta-barrel core with variations in their active site architecture. SrtA exhibits a catalytic triad arrangement similar to that in Streptococcus pyogenes SrtA but different from that in Staphylococcus aureus SrtA. In contrast, the SrtC1 enzyme contains an N-terminal helical domain and a 'lid' in its putative active site, which is similar to that seen in Streptococcus pneumoniae pilus-specific sortases, although with subtle differences in positioning and composition. To understand the effect of such differences on substrate recognition, we have also determined the crystal structure of a SrtC1 mutant, in which the conserved DP(W/F/Y) motif was replaced with the sorting signal motif of GBS80, IPNTG. By comparing the structures of WT wild type SrtA and SrtC1 and the 'lid' mutant of SrtC1, we propose that structural elements within the active site and the lid may be important for defining the role of specific sortase in pili biogenesis.</description><subject>Amino Acid Sequence</subject><subject>Aminoacyltransferases - chemistry</subject><subject>Aminoacyltransferases - genetics</subject><subject>Aminoacyltransferases - metabolism</subject><subject>Anchoring</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biology</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Cell walls</subject><subject>Composition effects</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Crystallography, X-Ray</subject><subject>Cysteine Endopeptidases - chemistry</subject><subject>Cysteine Endopeptidases - genetics</subject><subject>Cysteine Endopeptidases - metabolism</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Fimbriae, Bacterial - enzymology</subject><subject>Fimbriae, Bacterial - genetics</subject><subject>Genes, Essential</subject><subject>Gram-positive bacteria</subject><subject>Methionine</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Organ Specificity</subject><subject>Pathogens</subject><subject>Peptidyl Transferases - chemistry</subject><subject>Peptidyl Transferases - genetics</subject><subject>Peptidyl Transferases - metabolism</subject><subject>Pili</subject><subject>Pilin</subject><subject>Pneumonia</subject><subject>Polyimide resins</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Proteins</subject><subject>Science</subject><subject>Sortase</subject><subject>Staphylococcus aureus</subject><subject>Streptococcus</subject><subject>Streptococcus agalactiae</subject><subject>Streptococcus agalactiae - cytology</subject><subject>Streptococcus agalactiae - enzymology</subject><subject>Streptococcus agalactiae - genetics</subject><subject>Streptococcus infections</subject><subject>Structural members</subject><subject>Structure-Activity Relationship</subject><subject>Substrates</subject><subject>User interface</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12PEyEUhidG467Vf2B0EhONF60wzAzghUnT-NFkk02seksYOLTU6TAC48e_l7azm9bsheECcnjOe-CFk2VPMZphQvGbrRt8J9tZ7zqYIVQUnFf3skvMSTGtC0Tun6wvskchbBGqCKvrh9lFgTkuKlZfZnEV_aDi4GWba2sMeOgUhLyB-Augy-MG8oRAH51ySg0hl2vZShWthHzjhgDfAXrbrXPZ6by37RCmoQdljVV5cD7KAOFtvvJxfiDSYoEfZw-MbAM8GedJ9vXD-y-LT9Or64_LxfxqqihmccplA6jRmlGKOauUQZSmkxdcN5SUWkKta9ogw8sCTFVITkuqSo61xpQ0rCCT7PlRt29dEKNhQWCShDhHrE7E8khoJ7ei93Yn_R_hpBWHgPNrIX20qgVRNQ0pOKmNVKZENeMVVAo1iHGmyd7aSfZurDY0O9AKuphcPRM93-nsRqzdT0FwXaOqTAKvRgHvfgwQotjZoKBtZQfJacEYL0tWHcgX_5B3X26k0ouBsJ1xqazaa4p5SWvGMEk_ZJLN7qDS0LCzKn0uY1P8LOH1WUJiIvyOazmEIJarz__PXn87Z1-esBuQbdwE1w7Rui6cg-URVN6F4MHceoyR2PfGjRti3xti7I2U9uz0fW6TbpqB_AXIjQpz</recordid><startdate>20110830</startdate><enddate>20110830</enddate><creator>Khare, B</creator><creator>Krishnan, V</creator><creator>Rajashankar, K R</creator><creator>I-Hsiu, H</creator><creator>Xin, M</creator><creator>Ton-That, H</creator><creator>Narayana, S V</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110830</creationdate><title>Structural differences between the Streptococcus agalactiae housekeeping and pilus-specific sortases: SrtA and SrtC1</title><author>Khare, B ; Krishnan, V ; Rajashankar, K R ; I-Hsiu, H ; Xin, M ; Ton-That, H ; Narayana, S V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c718t-9abe0bdd8771985cf07721929db734dae6d67b0f942ef52a9747c491dd173b823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Sequence</topic><topic>Aminoacyltransferases - chemistry</topic><topic>Aminoacyltransferases - genetics</topic><topic>Aminoacyltransferases - metabolism</topic><topic>Anchoring</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biology</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Cell walls</topic><topic>Composition effects</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Crystallography, X-Ray</topic><topic>Cysteine Endopeptidases - chemistry</topic><topic>Cysteine Endopeptidases - genetics</topic><topic>Cysteine Endopeptidases - metabolism</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Fimbriae, Bacterial - enzymology</topic><topic>Fimbriae, Bacterial - genetics</topic><topic>Genes, Essential</topic><topic>Gram-positive bacteria</topic><topic>Methionine</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Organ Specificity</topic><topic>Pathogens</topic><topic>Peptidyl Transferases - chemistry</topic><topic>Peptidyl Transferases - genetics</topic><topic>Peptidyl Transferases - metabolism</topic><topic>Pili</topic><topic>Pilin</topic><topic>Pneumonia</topic><topic>Polyimide resins</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Proteins</topic><topic>Science</topic><topic>Sortase</topic><topic>Staphylococcus aureus</topic><topic>Streptococcus</topic><topic>Streptococcus agalactiae</topic><topic>Streptococcus agalactiae - cytology</topic><topic>Streptococcus agalactiae - enzymology</topic><topic>Streptococcus agalactiae - genetics</topic><topic>Streptococcus infections</topic><topic>Structural members</topic><topic>Structure-Activity Relationship</topic><topic>Substrates</topic><topic>User interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khare, B</creatorcontrib><creatorcontrib>Krishnan, V</creatorcontrib><creatorcontrib>Rajashankar, K R</creatorcontrib><creatorcontrib>I-Hsiu, H</creatorcontrib><creatorcontrib>Xin, M</creatorcontrib><creatorcontrib>Ton-That, H</creatorcontrib><creatorcontrib>Narayana, S V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khare, B</au><au>Krishnan, V</au><au>Rajashankar, K R</au><au>I-Hsiu, H</au><au>Xin, M</au><au>Ton-That, H</au><au>Narayana, S V</au><au>May, Robin Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural differences between the Streptococcus agalactiae housekeeping and pilus-specific sortases: SrtA and SrtC1</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-08-30</date><risdate>2011</risdate><volume>6</volume><issue>8</issue><spage>e22995</spage><epage>e22995</epage><pages>e22995-e22995</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The assembly of pili on the cell wall of Gram-positive bacteria requires transpeptidase enzymes called sortases. In Streptococcus agalactiae, the PI-1 pilus island of strain 2603V/R encodes two pilus-specific sortases (SrtC1 and SrtC2) and three pilins (GBS80, GBS52 and GBS104). Although either pilus-specific sortase is sufficient for the polymerization of the major pilin, GBS80, incorporation of the minor pilins GBS52 and GBS104 into the pilus structure requires SrtC1 and SrtC2, respectively. The S. agalactiae housekeeping sortase, SrtA, whose gene is present at a different location and does not catalyze pilus polymerization, was shown to be involved in cell wall anchoring of pilus polymers. To understand the structural basis of sortases involved in such diverse functions, we determined the crystal structures of S. agalactiae SrtC1 and SrtA. Both enzymes are made of an eight-stranded beta-barrel core with variations in their active site architecture. SrtA exhibits a catalytic triad arrangement similar to that in Streptococcus pyogenes SrtA but different from that in Staphylococcus aureus SrtA. In contrast, the SrtC1 enzyme contains an N-terminal helical domain and a 'lid' in its putative active site, which is similar to that seen in Streptococcus pneumoniae pilus-specific sortases, although with subtle differences in positioning and composition. To understand the effect of such differences on substrate recognition, we have also determined the crystal structure of a SrtC1 mutant, in which the conserved DP(W/F/Y) motif was replaced with the sorting signal motif of GBS80, IPNTG. By comparing the structures of WT wild type SrtA and SrtC1 and the 'lid' mutant of SrtC1, we propose that structural elements within the active site and the lid may be important for defining the role of specific sortase in pili biogenesis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21912586</pmid><doi>10.1371/journal.pone.0022995</doi><tpages>e22995</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-08, Vol.6 (8), p.e22995-e22995
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1307799086
source Publicly Available Content Database; PubMed Central(OpenAccess)
subjects Amino Acid Sequence
Aminoacyltransferases - chemistry
Aminoacyltransferases - genetics
Aminoacyltransferases - metabolism
Anchoring
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biology
Catalysis
Catalytic Domain
Cell walls
Composition effects
Crystal structure
Crystallography
Crystallography, X-Ray
Cysteine Endopeptidases - chemistry
Cysteine Endopeptidases - genetics
Cysteine Endopeptidases - metabolism
Enzyme Stability
Enzymes
Fimbriae, Bacterial - enzymology
Fimbriae, Bacterial - genetics
Genes, Essential
Gram-positive bacteria
Methionine
Models, Molecular
Molecular Sequence Data
Mutation
Organ Specificity
Pathogens
Peptidyl Transferases - chemistry
Peptidyl Transferases - genetics
Peptidyl Transferases - metabolism
Pili
Pilin
Pneumonia
Polyimide resins
Polymerization
Polymers
Proteins
Science
Sortase
Staphylococcus aureus
Streptococcus
Streptococcus agalactiae
Streptococcus agalactiae - cytology
Streptococcus agalactiae - enzymology
Streptococcus agalactiae - genetics
Streptococcus infections
Structural members
Structure-Activity Relationship
Substrates
User interface
title Structural differences between the Streptococcus agalactiae housekeeping and pilus-specific sortases: SrtA and SrtC1
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20differences%20between%20the%20Streptococcus%20agalactiae%20housekeeping%20and%20pilus-specific%20sortases:%20SrtA%20and%20SrtC1&rft.jtitle=PloS%20one&rft.au=Khare,%20B&rft.date=2011-08-30&rft.volume=6&rft.issue=8&rft.spage=e22995&rft.epage=e22995&rft.pages=e22995-e22995&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0022995&rft_dat=%3Cgale_plos_%3EA476881319%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c718t-9abe0bdd8771985cf07721929db734dae6d67b0f942ef52a9747c491dd173b823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1307799086&rft_id=info:pmid/21912586&rft_galeid=A476881319&rfr_iscdi=true