Loading…
Functional analysis of the cytoskeleton protein MreB from Chlamydophila pneumoniae
In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, the...
Saved in:
Published in: | PloS one 2011-10, Vol.6 (10), p.e25129-e25129 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c757t-19b1eccf562506ca7dccb03cc02935cae8505cf487fffe53fc07a270962c71853 |
---|---|
cites | cdi_FETCH-LOGICAL-c757t-19b1eccf562506ca7dccb03cc02935cae8505cf487fffe53fc07a270962c71853 |
container_end_page | e25129 |
container_issue | 10 |
container_start_page | e25129 |
container_title | PloS one |
container_volume | 6 |
creator | Gaballah, Ahmed Kloeckner, Anna Otten, Christian Sahl, Hans-Georg Henrichfreise, Beate |
description | In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae. |
doi_str_mv | 10.1371/journal.pone.0025129 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1309098824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476869261</galeid><doaj_id>oai_doaj_org_article_d12933450f7747eba4a22f961e5cc0c7</doaj_id><sourcerecordid>A476869261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c757t-19b1eccf562506ca7dccb03cc02935cae8505cf487fffe53fc07a270962c71853</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLguLFjPlokvZGWAdXB1YW1o_bkElPZjKmTTdpxfn3ZpzuMpW9kEASkue85-TkzbLnGM0xFfjd1g-hVW7e-RbmCBGGSfUgO8UVJTNOEH14tD_JnsS4RYjRkvPH2QkhiBAqytPs-mJodW99UspVmnbRxtybvN9Arne9jz_BQe_bvAu-B9vmXwJ8yE3wTb7YONXsat9trFN518LQ-NYqeJo9MspFeDauZ9n3i4_fFp9nl1eflovzy5kWTPQzXK0waG0YJwxxrUSt9QpRrRGpKNMKSoaYNkUpjDHAqNFIKCJQxYkWuGT0LHt50O2cj3JsR5SYogpVZUmKRCwPRO3VVnbBNirspFdW_j3wYS1V6K12IOvUPUoLhowQhYCVKhQhpuIYWKpIi6T1fsw2rBqoNbR9UG4iOr1p7Uau_S9JcSkEQ0ngzSgQ_M0AsZeNjRqcUy34IcoKIU4FRziRr_4h73_cSK1Vqt-2xqe0eq8pzwvBS14Rvtea30OlUUNjdbKOsel8EvB2EpCYHn73azXEKJdfr_-fvfoxZV8fsRtQrt9E74a99-IULA6gDj7GAOauxxjJvfNvuyH3zpej81PYi-P_uQu6tTr9AxTh_lo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1309098824</pqid></control><display><type>article</type><title>Functional analysis of the cytoskeleton protein MreB from Chlamydophila pneumoniae</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Gaballah, Ahmed ; Kloeckner, Anna ; Otten, Christian ; Sahl, Hans-Georg ; Henrichfreise, Beate</creator><contributor>Gasset, Maria</contributor><creatorcontrib>Gaballah, Ahmed ; Kloeckner, Anna ; Otten, Christian ; Sahl, Hans-Georg ; Henrichfreise, Beate ; Gasset, Maria</creatorcontrib><description>In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0025129</identifier><identifier>PMID: 22022378</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actin ; Addition polymerization ; Adenosine Triphosphatases - metabolism ; Adenosine Triphosphate - pharmacology ; Anabaena ; Analysis ; ATP ; Bacillus subtilis ; Bacteria ; Bacterial Proteins - metabolism ; Biology ; Biosynthesis ; Blocking ; Cell cycle ; Cell division ; Cell walls ; Chemistry ; Chlamydia ; Chlamydia pneumoniae ; Chlamydophila pneumoniae - drug effects ; Chlamydophila pneumoniae - metabolism ; Conservation ; Cytoskeletal proteins ; Cytoskeletal Proteins - metabolism ; Cytoskeleton ; E coli ; Elongation ; Escherichia coli ; Functional analysis ; Genomes ; Homology ; Hydrolysis ; Hydrolysis - drug effects ; Immunology ; Kinases ; Lipids ; Machinery ; Machinery and equipment ; Materials Science ; Models, Biological ; Morphogenesis ; Mutant Proteins - metabolism ; Osmosis ; Osmotic pressure ; Parasitology ; Pelleting ; Penicillin ; Peptidoglycans ; Pharmaceuticals ; Phosphatase ; Phosphates ; Physiological aspects ; Pneumonia ; Polymerization ; Polymerization - drug effects ; Polymers ; Protein Binding - drug effects ; Proteins ; Rods ; Sedimentation & deposition ; Septum ; Sexually transmitted diseases ; STD ; Tethering ; Thiourea - analogs & derivatives ; Thiourea - pharmacology ; Tubulin ; Two-Hybrid System Techniques ; Uridine Diphosphate N-Acetylmuramic Acid - analogs & derivatives ; Uridine Diphosphate N-Acetylmuramic Acid - biosynthesis</subject><ispartof>PloS one, 2011-10, Vol.6 (10), p.e25129-e25129</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Gaballah et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Gaballah et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c757t-19b1eccf562506ca7dccb03cc02935cae8505cf487fffe53fc07a270962c71853</citedby><cites>FETCH-LOGICAL-c757t-19b1eccf562506ca7dccb03cc02935cae8505cf487fffe53fc07a270962c71853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1309098824/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1309098824?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22022378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gasset, Maria</contributor><creatorcontrib>Gaballah, Ahmed</creatorcontrib><creatorcontrib>Kloeckner, Anna</creatorcontrib><creatorcontrib>Otten, Christian</creatorcontrib><creatorcontrib>Sahl, Hans-Georg</creatorcontrib><creatorcontrib>Henrichfreise, Beate</creatorcontrib><title>Functional analysis of the cytoskeleton protein MreB from Chlamydophila pneumoniae</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae.</description><subject>Actin</subject><subject>Addition polymerization</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Adenosine Triphosphate - pharmacology</subject><subject>Anabaena</subject><subject>Analysis</subject><subject>ATP</subject><subject>Bacillus subtilis</subject><subject>Bacteria</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biology</subject><subject>Biosynthesis</subject><subject>Blocking</subject><subject>Cell cycle</subject><subject>Cell division</subject><subject>Cell walls</subject><subject>Chemistry</subject><subject>Chlamydia</subject><subject>Chlamydia pneumoniae</subject><subject>Chlamydophila pneumoniae - drug effects</subject><subject>Chlamydophila pneumoniae - metabolism</subject><subject>Conservation</subject><subject>Cytoskeletal proteins</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Cytoskeleton</subject><subject>E coli</subject><subject>Elongation</subject><subject>Escherichia coli</subject><subject>Functional analysis</subject><subject>Genomes</subject><subject>Homology</subject><subject>Hydrolysis</subject><subject>Hydrolysis - drug effects</subject><subject>Immunology</subject><subject>Kinases</subject><subject>Lipids</subject><subject>Machinery</subject><subject>Machinery and equipment</subject><subject>Materials Science</subject><subject>Models, Biological</subject><subject>Morphogenesis</subject><subject>Mutant Proteins - metabolism</subject><subject>Osmosis</subject><subject>Osmotic pressure</subject><subject>Parasitology</subject><subject>Pelleting</subject><subject>Penicillin</subject><subject>Peptidoglycans</subject><subject>Pharmaceuticals</subject><subject>Phosphatase</subject><subject>Phosphates</subject><subject>Physiological aspects</subject><subject>Pneumonia</subject><subject>Polymerization</subject><subject>Polymerization - drug effects</subject><subject>Polymers</subject><subject>Protein Binding - drug effects</subject><subject>Proteins</subject><subject>Rods</subject><subject>Sedimentation & deposition</subject><subject>Septum</subject><subject>Sexually transmitted diseases</subject><subject>STD</subject><subject>Tethering</subject><subject>Thiourea - analogs & derivatives</subject><subject>Thiourea - pharmacology</subject><subject>Tubulin</subject><subject>Two-Hybrid System Techniques</subject><subject>Uridine Diphosphate N-Acetylmuramic Acid - analogs & derivatives</subject><subject>Uridine Diphosphate N-Acetylmuramic Acid - biosynthesis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLguLFjPlokvZGWAdXB1YW1o_bkElPZjKmTTdpxfn3ZpzuMpW9kEASkue85-TkzbLnGM0xFfjd1g-hVW7e-RbmCBGGSfUgO8UVJTNOEH14tD_JnsS4RYjRkvPH2QkhiBAqytPs-mJodW99UspVmnbRxtybvN9Arne9jz_BQe_bvAu-B9vmXwJ8yE3wTb7YONXsat9trFN518LQ-NYqeJo9MspFeDauZ9n3i4_fFp9nl1eflovzy5kWTPQzXK0waG0YJwxxrUSt9QpRrRGpKNMKSoaYNkUpjDHAqNFIKCJQxYkWuGT0LHt50O2cj3JsR5SYogpVZUmKRCwPRO3VVnbBNirspFdW_j3wYS1V6K12IOvUPUoLhowQhYCVKhQhpuIYWKpIi6T1fsw2rBqoNbR9UG4iOr1p7Uau_S9JcSkEQ0ngzSgQ_M0AsZeNjRqcUy34IcoKIU4FRziRr_4h73_cSK1Vqt-2xqe0eq8pzwvBS14Rvtea30OlUUNjdbKOsel8EvB2EpCYHn73azXEKJdfr_-fvfoxZV8fsRtQrt9E74a99-IULA6gDj7GAOauxxjJvfNvuyH3zpej81PYi-P_uQu6tTr9AxTh_lo</recordid><startdate>20111005</startdate><enddate>20111005</enddate><creator>Gaballah, Ahmed</creator><creator>Kloeckner, Anna</creator><creator>Otten, Christian</creator><creator>Sahl, Hans-Georg</creator><creator>Henrichfreise, Beate</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111005</creationdate><title>Functional analysis of the cytoskeleton protein MreB from Chlamydophila pneumoniae</title><author>Gaballah, Ahmed ; Kloeckner, Anna ; Otten, Christian ; Sahl, Hans-Georg ; Henrichfreise, Beate</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c757t-19b1eccf562506ca7dccb03cc02935cae8505cf487fffe53fc07a270962c71853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Actin</topic><topic>Addition polymerization</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Adenosine Triphosphate - pharmacology</topic><topic>Anabaena</topic><topic>Analysis</topic><topic>ATP</topic><topic>Bacillus subtilis</topic><topic>Bacteria</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biology</topic><topic>Biosynthesis</topic><topic>Blocking</topic><topic>Cell cycle</topic><topic>Cell division</topic><topic>Cell walls</topic><topic>Chemistry</topic><topic>Chlamydia</topic><topic>Chlamydia pneumoniae</topic><topic>Chlamydophila pneumoniae - drug effects</topic><topic>Chlamydophila pneumoniae - metabolism</topic><topic>Conservation</topic><topic>Cytoskeletal proteins</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Cytoskeleton</topic><topic>E coli</topic><topic>Elongation</topic><topic>Escherichia coli</topic><topic>Functional analysis</topic><topic>Genomes</topic><topic>Homology</topic><topic>Hydrolysis</topic><topic>Hydrolysis - drug effects</topic><topic>Immunology</topic><topic>Kinases</topic><topic>Lipids</topic><topic>Machinery</topic><topic>Machinery and equipment</topic><topic>Materials Science</topic><topic>Models, Biological</topic><topic>Morphogenesis</topic><topic>Mutant Proteins - metabolism</topic><topic>Osmosis</topic><topic>Osmotic pressure</topic><topic>Parasitology</topic><topic>Pelleting</topic><topic>Penicillin</topic><topic>Peptidoglycans</topic><topic>Pharmaceuticals</topic><topic>Phosphatase</topic><topic>Phosphates</topic><topic>Physiological aspects</topic><topic>Pneumonia</topic><topic>Polymerization</topic><topic>Polymerization - drug effects</topic><topic>Polymers</topic><topic>Protein Binding - drug effects</topic><topic>Proteins</topic><topic>Rods</topic><topic>Sedimentation & deposition</topic><topic>Septum</topic><topic>Sexually transmitted diseases</topic><topic>STD</topic><topic>Tethering</topic><topic>Thiourea - analogs & derivatives</topic><topic>Thiourea - pharmacology</topic><topic>Tubulin</topic><topic>Two-Hybrid System Techniques</topic><topic>Uridine Diphosphate N-Acetylmuramic Acid - analogs & derivatives</topic><topic>Uridine Diphosphate N-Acetylmuramic Acid - biosynthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaballah, Ahmed</creatorcontrib><creatorcontrib>Kloeckner, Anna</creatorcontrib><creatorcontrib>Otten, Christian</creatorcontrib><creatorcontrib>Sahl, Hans-Georg</creatorcontrib><creatorcontrib>Henrichfreise, Beate</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaballah, Ahmed</au><au>Kloeckner, Anna</au><au>Otten, Christian</au><au>Sahl, Hans-Georg</au><au>Henrichfreise, Beate</au><au>Gasset, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional analysis of the cytoskeleton protein MreB from Chlamydophila pneumoniae</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-10-05</date><risdate>2011</risdate><volume>6</volume><issue>10</issue><spage>e25129</spage><epage>e25129</epage><pages>e25129-e25129</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22022378</pmid><doi>10.1371/journal.pone.0025129</doi><tpages>e25129</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-10, Vol.6 (10), p.e25129-e25129 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1309098824 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Actin Addition polymerization Adenosine Triphosphatases - metabolism Adenosine Triphosphate - pharmacology Anabaena Analysis ATP Bacillus subtilis Bacteria Bacterial Proteins - metabolism Biology Biosynthesis Blocking Cell cycle Cell division Cell walls Chemistry Chlamydia Chlamydia pneumoniae Chlamydophila pneumoniae - drug effects Chlamydophila pneumoniae - metabolism Conservation Cytoskeletal proteins Cytoskeletal Proteins - metabolism Cytoskeleton E coli Elongation Escherichia coli Functional analysis Genomes Homology Hydrolysis Hydrolysis - drug effects Immunology Kinases Lipids Machinery Machinery and equipment Materials Science Models, Biological Morphogenesis Mutant Proteins - metabolism Osmosis Osmotic pressure Parasitology Pelleting Penicillin Peptidoglycans Pharmaceuticals Phosphatase Phosphates Physiological aspects Pneumonia Polymerization Polymerization - drug effects Polymers Protein Binding - drug effects Proteins Rods Sedimentation & deposition Septum Sexually transmitted diseases STD Tethering Thiourea - analogs & derivatives Thiourea - pharmacology Tubulin Two-Hybrid System Techniques Uridine Diphosphate N-Acetylmuramic Acid - analogs & derivatives Uridine Diphosphate N-Acetylmuramic Acid - biosynthesis |
title | Functional analysis of the cytoskeleton protein MreB from Chlamydophila pneumoniae |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20analysis%20of%20the%20cytoskeleton%20protein%20MreB%20from%20Chlamydophila%20pneumoniae&rft.jtitle=PloS%20one&rft.au=Gaballah,%20Ahmed&rft.date=2011-10-05&rft.volume=6&rft.issue=10&rft.spage=e25129&rft.epage=e25129&rft.pages=e25129-e25129&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0025129&rft_dat=%3Cgale_plos_%3EA476869261%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c757t-19b1eccf562506ca7dccb03cc02935cae8505cf487fffe53fc07a270962c71853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1309098824&rft_id=info:pmid/22022378&rft_galeid=A476869261&rfr_iscdi=true |