Loading…

Functional analysis of the cytoskeleton protein MreB from Chlamydophila pneumoniae

In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, the...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2011-10, Vol.6 (10), p.e25129-e25129
Main Authors: Gaballah, Ahmed, Kloeckner, Anna, Otten, Christian, Sahl, Hans-Georg, Henrichfreise, Beate
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c757t-19b1eccf562506ca7dccb03cc02935cae8505cf487fffe53fc07a270962c71853
cites cdi_FETCH-LOGICAL-c757t-19b1eccf562506ca7dccb03cc02935cae8505cf487fffe53fc07a270962c71853
container_end_page e25129
container_issue 10
container_start_page e25129
container_title PloS one
container_volume 6
creator Gaballah, Ahmed
Kloeckner, Anna
Otten, Christian
Sahl, Hans-Georg
Henrichfreise, Beate
description In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae.
doi_str_mv 10.1371/journal.pone.0025129
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1309098824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476869261</galeid><doaj_id>oai_doaj_org_article_d12933450f7747eba4a22f961e5cc0c7</doaj_id><sourcerecordid>A476869261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c757t-19b1eccf562506ca7dccb03cc02935cae8505cf487fffe53fc07a270962c71853</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLguLFjPlokvZGWAdXB1YW1o_bkElPZjKmTTdpxfn3ZpzuMpW9kEASkue85-TkzbLnGM0xFfjd1g-hVW7e-RbmCBGGSfUgO8UVJTNOEH14tD_JnsS4RYjRkvPH2QkhiBAqytPs-mJodW99UspVmnbRxtybvN9Arne9jz_BQe_bvAu-B9vmXwJ8yE3wTb7YONXsat9trFN518LQ-NYqeJo9MspFeDauZ9n3i4_fFp9nl1eflovzy5kWTPQzXK0waG0YJwxxrUSt9QpRrRGpKNMKSoaYNkUpjDHAqNFIKCJQxYkWuGT0LHt50O2cj3JsR5SYogpVZUmKRCwPRO3VVnbBNirspFdW_j3wYS1V6K12IOvUPUoLhowQhYCVKhQhpuIYWKpIi6T1fsw2rBqoNbR9UG4iOr1p7Uau_S9JcSkEQ0ngzSgQ_M0AsZeNjRqcUy34IcoKIU4FRziRr_4h73_cSK1Vqt-2xqe0eq8pzwvBS14Rvtea30OlUUNjdbKOsel8EvB2EpCYHn73azXEKJdfr_-fvfoxZV8fsRtQrt9E74a99-IULA6gDj7GAOauxxjJvfNvuyH3zpej81PYi-P_uQu6tTr9AxTh_lo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1309098824</pqid></control><display><type>article</type><title>Functional analysis of the cytoskeleton protein MreB from Chlamydophila pneumoniae</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Gaballah, Ahmed ; Kloeckner, Anna ; Otten, Christian ; Sahl, Hans-Georg ; Henrichfreise, Beate</creator><contributor>Gasset, Maria</contributor><creatorcontrib>Gaballah, Ahmed ; Kloeckner, Anna ; Otten, Christian ; Sahl, Hans-Georg ; Henrichfreise, Beate ; Gasset, Maria</creatorcontrib><description>In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0025129</identifier><identifier>PMID: 22022378</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actin ; Addition polymerization ; Adenosine Triphosphatases - metabolism ; Adenosine Triphosphate - pharmacology ; Anabaena ; Analysis ; ATP ; Bacillus subtilis ; Bacteria ; Bacterial Proteins - metabolism ; Biology ; Biosynthesis ; Blocking ; Cell cycle ; Cell division ; Cell walls ; Chemistry ; Chlamydia ; Chlamydia pneumoniae ; Chlamydophila pneumoniae - drug effects ; Chlamydophila pneumoniae - metabolism ; Conservation ; Cytoskeletal proteins ; Cytoskeletal Proteins - metabolism ; Cytoskeleton ; E coli ; Elongation ; Escherichia coli ; Functional analysis ; Genomes ; Homology ; Hydrolysis ; Hydrolysis - drug effects ; Immunology ; Kinases ; Lipids ; Machinery ; Machinery and equipment ; Materials Science ; Models, Biological ; Morphogenesis ; Mutant Proteins - metabolism ; Osmosis ; Osmotic pressure ; Parasitology ; Pelleting ; Penicillin ; Peptidoglycans ; Pharmaceuticals ; Phosphatase ; Phosphates ; Physiological aspects ; Pneumonia ; Polymerization ; Polymerization - drug effects ; Polymers ; Protein Binding - drug effects ; Proteins ; Rods ; Sedimentation &amp; deposition ; Septum ; Sexually transmitted diseases ; STD ; Tethering ; Thiourea - analogs &amp; derivatives ; Thiourea - pharmacology ; Tubulin ; Two-Hybrid System Techniques ; Uridine Diphosphate N-Acetylmuramic Acid - analogs &amp; derivatives ; Uridine Diphosphate N-Acetylmuramic Acid - biosynthesis</subject><ispartof>PloS one, 2011-10, Vol.6 (10), p.e25129-e25129</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Gaballah et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Gaballah et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c757t-19b1eccf562506ca7dccb03cc02935cae8505cf487fffe53fc07a270962c71853</citedby><cites>FETCH-LOGICAL-c757t-19b1eccf562506ca7dccb03cc02935cae8505cf487fffe53fc07a270962c71853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1309098824/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1309098824?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22022378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gasset, Maria</contributor><creatorcontrib>Gaballah, Ahmed</creatorcontrib><creatorcontrib>Kloeckner, Anna</creatorcontrib><creatorcontrib>Otten, Christian</creatorcontrib><creatorcontrib>Sahl, Hans-Georg</creatorcontrib><creatorcontrib>Henrichfreise, Beate</creatorcontrib><title>Functional analysis of the cytoskeleton protein MreB from Chlamydophila pneumoniae</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae.</description><subject>Actin</subject><subject>Addition polymerization</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Adenosine Triphosphate - pharmacology</subject><subject>Anabaena</subject><subject>Analysis</subject><subject>ATP</subject><subject>Bacillus subtilis</subject><subject>Bacteria</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biology</subject><subject>Biosynthesis</subject><subject>Blocking</subject><subject>Cell cycle</subject><subject>Cell division</subject><subject>Cell walls</subject><subject>Chemistry</subject><subject>Chlamydia</subject><subject>Chlamydia pneumoniae</subject><subject>Chlamydophila pneumoniae - drug effects</subject><subject>Chlamydophila pneumoniae - metabolism</subject><subject>Conservation</subject><subject>Cytoskeletal proteins</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Cytoskeleton</subject><subject>E coli</subject><subject>Elongation</subject><subject>Escherichia coli</subject><subject>Functional analysis</subject><subject>Genomes</subject><subject>Homology</subject><subject>Hydrolysis</subject><subject>Hydrolysis - drug effects</subject><subject>Immunology</subject><subject>Kinases</subject><subject>Lipids</subject><subject>Machinery</subject><subject>Machinery and equipment</subject><subject>Materials Science</subject><subject>Models, Biological</subject><subject>Morphogenesis</subject><subject>Mutant Proteins - metabolism</subject><subject>Osmosis</subject><subject>Osmotic pressure</subject><subject>Parasitology</subject><subject>Pelleting</subject><subject>Penicillin</subject><subject>Peptidoglycans</subject><subject>Pharmaceuticals</subject><subject>Phosphatase</subject><subject>Phosphates</subject><subject>Physiological aspects</subject><subject>Pneumonia</subject><subject>Polymerization</subject><subject>Polymerization - drug effects</subject><subject>Polymers</subject><subject>Protein Binding - drug effects</subject><subject>Proteins</subject><subject>Rods</subject><subject>Sedimentation &amp; deposition</subject><subject>Septum</subject><subject>Sexually transmitted diseases</subject><subject>STD</subject><subject>Tethering</subject><subject>Thiourea - analogs &amp; derivatives</subject><subject>Thiourea - pharmacology</subject><subject>Tubulin</subject><subject>Two-Hybrid System Techniques</subject><subject>Uridine Diphosphate N-Acetylmuramic Acid - analogs &amp; derivatives</subject><subject>Uridine Diphosphate N-Acetylmuramic Acid - biosynthesis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLguLFjPlokvZGWAdXB1YW1o_bkElPZjKmTTdpxfn3ZpzuMpW9kEASkue85-TkzbLnGM0xFfjd1g-hVW7e-RbmCBGGSfUgO8UVJTNOEH14tD_JnsS4RYjRkvPH2QkhiBAqytPs-mJodW99UspVmnbRxtybvN9Arne9jz_BQe_bvAu-B9vmXwJ8yE3wTb7YONXsat9trFN518LQ-NYqeJo9MspFeDauZ9n3i4_fFp9nl1eflovzy5kWTPQzXK0waG0YJwxxrUSt9QpRrRGpKNMKSoaYNkUpjDHAqNFIKCJQxYkWuGT0LHt50O2cj3JsR5SYogpVZUmKRCwPRO3VVnbBNirspFdW_j3wYS1V6K12IOvUPUoLhowQhYCVKhQhpuIYWKpIi6T1fsw2rBqoNbR9UG4iOr1p7Uau_S9JcSkEQ0ngzSgQ_M0AsZeNjRqcUy34IcoKIU4FRziRr_4h73_cSK1Vqt-2xqe0eq8pzwvBS14Rvtea30OlUUNjdbKOsel8EvB2EpCYHn73azXEKJdfr_-fvfoxZV8fsRtQrt9E74a99-IULA6gDj7GAOauxxjJvfNvuyH3zpej81PYi-P_uQu6tTr9AxTh_lo</recordid><startdate>20111005</startdate><enddate>20111005</enddate><creator>Gaballah, Ahmed</creator><creator>Kloeckner, Anna</creator><creator>Otten, Christian</creator><creator>Sahl, Hans-Georg</creator><creator>Henrichfreise, Beate</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111005</creationdate><title>Functional analysis of the cytoskeleton protein MreB from Chlamydophila pneumoniae</title><author>Gaballah, Ahmed ; Kloeckner, Anna ; Otten, Christian ; Sahl, Hans-Georg ; Henrichfreise, Beate</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c757t-19b1eccf562506ca7dccb03cc02935cae8505cf487fffe53fc07a270962c71853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Actin</topic><topic>Addition polymerization</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Adenosine Triphosphate - pharmacology</topic><topic>Anabaena</topic><topic>Analysis</topic><topic>ATP</topic><topic>Bacillus subtilis</topic><topic>Bacteria</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biology</topic><topic>Biosynthesis</topic><topic>Blocking</topic><topic>Cell cycle</topic><topic>Cell division</topic><topic>Cell walls</topic><topic>Chemistry</topic><topic>Chlamydia</topic><topic>Chlamydia pneumoniae</topic><topic>Chlamydophila pneumoniae - drug effects</topic><topic>Chlamydophila pneumoniae - metabolism</topic><topic>Conservation</topic><topic>Cytoskeletal proteins</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Cytoskeleton</topic><topic>E coli</topic><topic>Elongation</topic><topic>Escherichia coli</topic><topic>Functional analysis</topic><topic>Genomes</topic><topic>Homology</topic><topic>Hydrolysis</topic><topic>Hydrolysis - drug effects</topic><topic>Immunology</topic><topic>Kinases</topic><topic>Lipids</topic><topic>Machinery</topic><topic>Machinery and equipment</topic><topic>Materials Science</topic><topic>Models, Biological</topic><topic>Morphogenesis</topic><topic>Mutant Proteins - metabolism</topic><topic>Osmosis</topic><topic>Osmotic pressure</topic><topic>Parasitology</topic><topic>Pelleting</topic><topic>Penicillin</topic><topic>Peptidoglycans</topic><topic>Pharmaceuticals</topic><topic>Phosphatase</topic><topic>Phosphates</topic><topic>Physiological aspects</topic><topic>Pneumonia</topic><topic>Polymerization</topic><topic>Polymerization - drug effects</topic><topic>Polymers</topic><topic>Protein Binding - drug effects</topic><topic>Proteins</topic><topic>Rods</topic><topic>Sedimentation &amp; deposition</topic><topic>Septum</topic><topic>Sexually transmitted diseases</topic><topic>STD</topic><topic>Tethering</topic><topic>Thiourea - analogs &amp; derivatives</topic><topic>Thiourea - pharmacology</topic><topic>Tubulin</topic><topic>Two-Hybrid System Techniques</topic><topic>Uridine Diphosphate N-Acetylmuramic Acid - analogs &amp; derivatives</topic><topic>Uridine Diphosphate N-Acetylmuramic Acid - biosynthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaballah, Ahmed</creatorcontrib><creatorcontrib>Kloeckner, Anna</creatorcontrib><creatorcontrib>Otten, Christian</creatorcontrib><creatorcontrib>Sahl, Hans-Georg</creatorcontrib><creatorcontrib>Henrichfreise, Beate</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaballah, Ahmed</au><au>Kloeckner, Anna</au><au>Otten, Christian</au><au>Sahl, Hans-Georg</au><au>Henrichfreise, Beate</au><au>Gasset, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional analysis of the cytoskeleton protein MreB from Chlamydophila pneumoniae</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-10-05</date><risdate>2011</risdate><volume>6</volume><issue>10</issue><spage>e25129</spage><epage>e25129</epage><pages>e25129-e25129</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22022378</pmid><doi>10.1371/journal.pone.0025129</doi><tpages>e25129</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-10, Vol.6 (10), p.e25129-e25129
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1309098824
source Publicly Available Content (ProQuest); PubMed Central
subjects Actin
Addition polymerization
Adenosine Triphosphatases - metabolism
Adenosine Triphosphate - pharmacology
Anabaena
Analysis
ATP
Bacillus subtilis
Bacteria
Bacterial Proteins - metabolism
Biology
Biosynthesis
Blocking
Cell cycle
Cell division
Cell walls
Chemistry
Chlamydia
Chlamydia pneumoniae
Chlamydophila pneumoniae - drug effects
Chlamydophila pneumoniae - metabolism
Conservation
Cytoskeletal proteins
Cytoskeletal Proteins - metabolism
Cytoskeleton
E coli
Elongation
Escherichia coli
Functional analysis
Genomes
Homology
Hydrolysis
Hydrolysis - drug effects
Immunology
Kinases
Lipids
Machinery
Machinery and equipment
Materials Science
Models, Biological
Morphogenesis
Mutant Proteins - metabolism
Osmosis
Osmotic pressure
Parasitology
Pelleting
Penicillin
Peptidoglycans
Pharmaceuticals
Phosphatase
Phosphates
Physiological aspects
Pneumonia
Polymerization
Polymerization - drug effects
Polymers
Protein Binding - drug effects
Proteins
Rods
Sedimentation & deposition
Septum
Sexually transmitted diseases
STD
Tethering
Thiourea - analogs & derivatives
Thiourea - pharmacology
Tubulin
Two-Hybrid System Techniques
Uridine Diphosphate N-Acetylmuramic Acid - analogs & derivatives
Uridine Diphosphate N-Acetylmuramic Acid - biosynthesis
title Functional analysis of the cytoskeleton protein MreB from Chlamydophila pneumoniae
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20analysis%20of%20the%20cytoskeleton%20protein%20MreB%20from%20Chlamydophila%20pneumoniae&rft.jtitle=PloS%20one&rft.au=Gaballah,%20Ahmed&rft.date=2011-10-05&rft.volume=6&rft.issue=10&rft.spage=e25129&rft.epage=e25129&rft.pages=e25129-e25129&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0025129&rft_dat=%3Cgale_plos_%3EA476869261%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c757t-19b1eccf562506ca7dccb03cc02935cae8505cf487fffe53fc07a270962c71853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1309098824&rft_id=info:pmid/22022378&rft_galeid=A476869261&rfr_iscdi=true