Loading…

Changes in cardiac substrate transporters and metabolic proteins mirror the metabolic shift in patients with aortic stenosis

In the hypertrophied human heart, fatty acid metabolism is decreased and glucose utilisation is increased. We hypothesized that the sarcolemmal and mitochondrial proteins involved in these key metabolic pathways would mirror these changes, providing a mechanism to account for the modified metabolic...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2011-10, Vol.6 (10), p.e26326-e26326
Main Authors: Heather, Lisa C, Howell, Neil J, Emmanuel, Yaso, Cole, Mark A, Frenneaux, Michael P, Pagano, Domenico, Clarke, Kieran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c691t-28fb2ca06ff34b1bc80c0266495b3ff61141fa8bb1107f89f5fd5096a5a7e4aa3
cites cdi_FETCH-LOGICAL-c691t-28fb2ca06ff34b1bc80c0266495b3ff61141fa8bb1107f89f5fd5096a5a7e4aa3
container_end_page e26326
container_issue 10
container_start_page e26326
container_title PloS one
container_volume 6
creator Heather, Lisa C
Howell, Neil J
Emmanuel, Yaso
Cole, Mark A
Frenneaux, Michael P
Pagano, Domenico
Clarke, Kieran
description In the hypertrophied human heart, fatty acid metabolism is decreased and glucose utilisation is increased. We hypothesized that the sarcolemmal and mitochondrial proteins involved in these key metabolic pathways would mirror these changes, providing a mechanism to account for the modified metabolic flux measured in the human heart. Echocardiography was performed to assess in vivo hypertrophy and aortic valve impairment in patients with aortic stenosis (n = 18). Cardiac biopsies were obtained during valve replacement surgery, and used for western blotting to measure metabolic protein levels. Protein levels of the predominant fatty acid transporter, fatty acid translocase (FAT/CD36) correlated negatively with levels of the glucose transporters, GLUT1 and GLUT4. The decrease in FAT/CD36 was accompanied by decreases in the fatty acid binding proteins, FABPpm and H-FABP, the β-oxidation protein medium chain acyl-coenzyme A dehydrogenase, the Krebs cycle protein α-ketoglutarate dehydrogenase and the oxidative phosphorylation protein ATP synthase. FAT/CD36 and complex I of the electron transport chain were downregulated, whereas the glucose transporter GLUT4 was upregulated with increasing left ventricular mass index, a measure of cardiac hypertrophy. In conclusion, coordinated downregulation of sequential steps involved in fatty acid and oxidative metabolism occur in the human heart, accompanied by upregulation of the glucose transporters. The profile of the substrate transporters and metabolic proteins mirror the metabolic shift from fatty acid to glucose utilisation that occurs in vivo in the human heart.
doi_str_mv 10.1371/journal.pone.0026326
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1310228563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476867548</galeid><doaj_id>oai_doaj_org_article_baf0ec011cbe4aa2b81c1078baf87b53</doaj_id><sourcerecordid>A476867548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-28fb2ca06ff34b1bc80c0266495b3ff61141fa8bb1107f89f5fd5096a5a7e4aa3</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQLguLDjEnapumLsAxeBhYWvL2GkzSZZmmT2ST1An54U6e7TGUfJNCUc37nfy7tybKnGK1xUeM3V270Fvr13lm1RojQgtB72SluCrKiBBX3j95PskchXCFUFYzSh9kJIYgwVtWn2e9NB3anQm5sLsG3BmQeRhGih6jy9LRh73xUPuRg23xQEYTrjcz33kVlbMgH473zeezUkTd0RsdJcw_RKBtD_sPELockNXmjsi6Y8Dh7oKEP6sl8n2Vf37_7svm4urj8sN2cX6wkbXBcEaYFkYCo1kUpsJAMydQvLZtKFFpTjEusgQmBMao1a3Sl2wo1FCqoVQlQnGXPD7r73gU-Dy5wXGBECKtokYjtgWgdXPG9NwP4X9yB4X8Nzu84TKX3igvQSEmEsRSTOBEMy5SXJTurRTVpvZ2zjWJQrUzte-gXokuPNR3fue-8wA2t6joJvJoFvLseVYh8MEGqvger3Bh4g1BdU1LhRL74h7y7uZnaQarfWO1SWjlp8vOypozWVckStb6DSqdVg5HpJ9Mm2RcBrxcBiYnqZ9zBGALffv70_-zltyX78ojtFPSxC64fo3E2LMHyAErvQvBK384YIz7tyM00-LQjfN6RFPbs-PvcBt0sRfEHrroPgA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1310228563</pqid></control><display><type>article</type><title>Changes in cardiac substrate transporters and metabolic proteins mirror the metabolic shift in patients with aortic stenosis</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Heather, Lisa C ; Howell, Neil J ; Emmanuel, Yaso ; Cole, Mark A ; Frenneaux, Michael P ; Pagano, Domenico ; Clarke, Kieran</creator><contributor>Bozza, Patricia T.</contributor><creatorcontrib>Heather, Lisa C ; Howell, Neil J ; Emmanuel, Yaso ; Cole, Mark A ; Frenneaux, Michael P ; Pagano, Domenico ; Clarke, Kieran ; Bozza, Patricia T.</creatorcontrib><description>In the hypertrophied human heart, fatty acid metabolism is decreased and glucose utilisation is increased. We hypothesized that the sarcolemmal and mitochondrial proteins involved in these key metabolic pathways would mirror these changes, providing a mechanism to account for the modified metabolic flux measured in the human heart. Echocardiography was performed to assess in vivo hypertrophy and aortic valve impairment in patients with aortic stenosis (n = 18). Cardiac biopsies were obtained during valve replacement surgery, and used for western blotting to measure metabolic protein levels. Protein levels of the predominant fatty acid transporter, fatty acid translocase (FAT/CD36) correlated negatively with levels of the glucose transporters, GLUT1 and GLUT4. The decrease in FAT/CD36 was accompanied by decreases in the fatty acid binding proteins, FABPpm and H-FABP, the β-oxidation protein medium chain acyl-coenzyme A dehydrogenase, the Krebs cycle protein α-ketoglutarate dehydrogenase and the oxidative phosphorylation protein ATP synthase. FAT/CD36 and complex I of the electron transport chain were downregulated, whereas the glucose transporter GLUT4 was upregulated with increasing left ventricular mass index, a measure of cardiac hypertrophy. In conclusion, coordinated downregulation of sequential steps involved in fatty acid and oxidative metabolism occur in the human heart, accompanied by upregulation of the glucose transporters. The profile of the substrate transporters and metabolic proteins mirror the metabolic shift from fatty acid to glucose utilisation that occurs in vivo in the human heart.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0026326</identifier><identifier>PMID: 22028857</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aged ; Anatomy &amp; physiology ; Angina pectoris ; Aorta ; Aortic stenosis ; Aortic valve ; Aortic valve stenosis ; Aortic Valve Stenosis - blood ; Aortic Valve Stenosis - metabolism ; Aortic Valve Stenosis - pathology ; ATP synthase ; Biology ; Cardiomyopathy ; CD36 antigen ; CD36 Antigens - metabolism ; Coenzyme A ; Cycle protein ; Dehydrogenase ; Dehydrogenases ; Diabetes ; Down-Regulation ; Echocardiography ; Electron transport ; Electron transport chain ; Enzymes ; Fatty acid-binding protein ; Fatty acids ; Fatty Acids - metabolism ; Female ; Gene expression ; Glucose ; Glucose - metabolism ; Glucose Transport Proteins, Facilitative - metabolism ; Glucose transporter ; Heart ; Heart diseases ; Heart failure ; Heart hypertrophy ; Heart surgery ; Human performance ; Humans ; Hypertrophy ; Immunoglobulins ; Ketoglutaric acid ; Krebs cycle ; Male ; Medical research ; Medicine ; Membrane Transport Proteins - metabolism ; Metabolic flux ; Metabolic pathways ; Metabolism ; Mitochondria ; Mitochondrial Proteins - metabolism ; Musculoskeletal system ; Myocardium - metabolism ; Myocardium - pathology ; Oxidation ; Oxidation-Reduction ; Oxidative phosphorylation ; Oxoglutarate dehydrogenase (lipoamide) ; Patients ; Phosphorylation ; Physiological aspects ; Physiology ; Protein binding ; Proteins ; Respiration ; Rodents ; Surgery ; Tricarboxylic acid cycle ; Ventricle ; Western blotting</subject><ispartof>PloS one, 2011-10, Vol.6 (10), p.e26326-e26326</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Heather et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Heather et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-28fb2ca06ff34b1bc80c0266495b3ff61141fa8bb1107f89f5fd5096a5a7e4aa3</citedby><cites>FETCH-LOGICAL-c691t-28fb2ca06ff34b1bc80c0266495b3ff61141fa8bb1107f89f5fd5096a5a7e4aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1310228563/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1310228563?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22028857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bozza, Patricia T.</contributor><creatorcontrib>Heather, Lisa C</creatorcontrib><creatorcontrib>Howell, Neil J</creatorcontrib><creatorcontrib>Emmanuel, Yaso</creatorcontrib><creatorcontrib>Cole, Mark A</creatorcontrib><creatorcontrib>Frenneaux, Michael P</creatorcontrib><creatorcontrib>Pagano, Domenico</creatorcontrib><creatorcontrib>Clarke, Kieran</creatorcontrib><title>Changes in cardiac substrate transporters and metabolic proteins mirror the metabolic shift in patients with aortic stenosis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In the hypertrophied human heart, fatty acid metabolism is decreased and glucose utilisation is increased. We hypothesized that the sarcolemmal and mitochondrial proteins involved in these key metabolic pathways would mirror these changes, providing a mechanism to account for the modified metabolic flux measured in the human heart. Echocardiography was performed to assess in vivo hypertrophy and aortic valve impairment in patients with aortic stenosis (n = 18). Cardiac biopsies were obtained during valve replacement surgery, and used for western blotting to measure metabolic protein levels. Protein levels of the predominant fatty acid transporter, fatty acid translocase (FAT/CD36) correlated negatively with levels of the glucose transporters, GLUT1 and GLUT4. The decrease in FAT/CD36 was accompanied by decreases in the fatty acid binding proteins, FABPpm and H-FABP, the β-oxidation protein medium chain acyl-coenzyme A dehydrogenase, the Krebs cycle protein α-ketoglutarate dehydrogenase and the oxidative phosphorylation protein ATP synthase. FAT/CD36 and complex I of the electron transport chain were downregulated, whereas the glucose transporter GLUT4 was upregulated with increasing left ventricular mass index, a measure of cardiac hypertrophy. In conclusion, coordinated downregulation of sequential steps involved in fatty acid and oxidative metabolism occur in the human heart, accompanied by upregulation of the glucose transporters. The profile of the substrate transporters and metabolic proteins mirror the metabolic shift from fatty acid to glucose utilisation that occurs in vivo in the human heart.</description><subject>Aged</subject><subject>Anatomy &amp; physiology</subject><subject>Angina pectoris</subject><subject>Aorta</subject><subject>Aortic stenosis</subject><subject>Aortic valve</subject><subject>Aortic valve stenosis</subject><subject>Aortic Valve Stenosis - blood</subject><subject>Aortic Valve Stenosis - metabolism</subject><subject>Aortic Valve Stenosis - pathology</subject><subject>ATP synthase</subject><subject>Biology</subject><subject>Cardiomyopathy</subject><subject>CD36 antigen</subject><subject>CD36 Antigens - metabolism</subject><subject>Coenzyme A</subject><subject>Cycle protein</subject><subject>Dehydrogenase</subject><subject>Dehydrogenases</subject><subject>Diabetes</subject><subject>Down-Regulation</subject><subject>Echocardiography</subject><subject>Electron transport</subject><subject>Electron transport chain</subject><subject>Enzymes</subject><subject>Fatty acid-binding protein</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Female</subject><subject>Gene expression</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose Transport Proteins, Facilitative - metabolism</subject><subject>Glucose transporter</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Heart failure</subject><subject>Heart hypertrophy</subject><subject>Heart surgery</subject><subject>Human performance</subject><subject>Humans</subject><subject>Hypertrophy</subject><subject>Immunoglobulins</subject><subject>Ketoglutaric acid</subject><subject>Krebs cycle</subject><subject>Male</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Metabolic flux</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Musculoskeletal system</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - pathology</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidative phosphorylation</subject><subject>Oxoglutarate dehydrogenase (lipoamide)</subject><subject>Patients</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Respiration</subject><subject>Rodents</subject><subject>Surgery</subject><subject>Tricarboxylic acid cycle</subject><subject>Ventricle</subject><subject>Western blotting</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQLguLDjEnapumLsAxeBhYWvL2GkzSZZmmT2ST1An54U6e7TGUfJNCUc37nfy7tybKnGK1xUeM3V270Fvr13lm1RojQgtB72SluCrKiBBX3j95PskchXCFUFYzSh9kJIYgwVtWn2e9NB3anQm5sLsG3BmQeRhGih6jy9LRh73xUPuRg23xQEYTrjcz33kVlbMgH473zeezUkTd0RsdJcw_RKBtD_sPELockNXmjsi6Y8Dh7oKEP6sl8n2Vf37_7svm4urj8sN2cX6wkbXBcEaYFkYCo1kUpsJAMydQvLZtKFFpTjEusgQmBMao1a3Sl2wo1FCqoVQlQnGXPD7r73gU-Dy5wXGBECKtokYjtgWgdXPG9NwP4X9yB4X8Nzu84TKX3igvQSEmEsRSTOBEMy5SXJTurRTVpvZ2zjWJQrUzte-gXokuPNR3fue-8wA2t6joJvJoFvLseVYh8MEGqvger3Bh4g1BdU1LhRL74h7y7uZnaQarfWO1SWjlp8vOypozWVckStb6DSqdVg5HpJ9Mm2RcBrxcBiYnqZ9zBGALffv70_-zltyX78ojtFPSxC64fo3E2LMHyAErvQvBK384YIz7tyM00-LQjfN6RFPbs-PvcBt0sRfEHrroPgA</recordid><startdate>20111018</startdate><enddate>20111018</enddate><creator>Heather, Lisa C</creator><creator>Howell, Neil J</creator><creator>Emmanuel, Yaso</creator><creator>Cole, Mark A</creator><creator>Frenneaux, Michael P</creator><creator>Pagano, Domenico</creator><creator>Clarke, Kieran</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111018</creationdate><title>Changes in cardiac substrate transporters and metabolic proteins mirror the metabolic shift in patients with aortic stenosis</title><author>Heather, Lisa C ; Howell, Neil J ; Emmanuel, Yaso ; Cole, Mark A ; Frenneaux, Michael P ; Pagano, Domenico ; Clarke, Kieran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-28fb2ca06ff34b1bc80c0266495b3ff61141fa8bb1107f89f5fd5096a5a7e4aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aged</topic><topic>Anatomy &amp; physiology</topic><topic>Angina pectoris</topic><topic>Aorta</topic><topic>Aortic stenosis</topic><topic>Aortic valve</topic><topic>Aortic valve stenosis</topic><topic>Aortic Valve Stenosis - blood</topic><topic>Aortic Valve Stenosis - metabolism</topic><topic>Aortic Valve Stenosis - pathology</topic><topic>ATP synthase</topic><topic>Biology</topic><topic>Cardiomyopathy</topic><topic>CD36 antigen</topic><topic>CD36 Antigens - metabolism</topic><topic>Coenzyme A</topic><topic>Cycle protein</topic><topic>Dehydrogenase</topic><topic>Dehydrogenases</topic><topic>Diabetes</topic><topic>Down-Regulation</topic><topic>Echocardiography</topic><topic>Electron transport</topic><topic>Electron transport chain</topic><topic>Enzymes</topic><topic>Fatty acid-binding protein</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Female</topic><topic>Gene expression</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose Transport Proteins, Facilitative - metabolism</topic><topic>Glucose transporter</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Heart failure</topic><topic>Heart hypertrophy</topic><topic>Heart surgery</topic><topic>Human performance</topic><topic>Humans</topic><topic>Hypertrophy</topic><topic>Immunoglobulins</topic><topic>Ketoglutaric acid</topic><topic>Krebs cycle</topic><topic>Male</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Metabolic flux</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Musculoskeletal system</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - pathology</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidative phosphorylation</topic><topic>Oxoglutarate dehydrogenase (lipoamide)</topic><topic>Patients</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Respiration</topic><topic>Rodents</topic><topic>Surgery</topic><topic>Tricarboxylic acid cycle</topic><topic>Ventricle</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heather, Lisa C</creatorcontrib><creatorcontrib>Howell, Neil J</creatorcontrib><creatorcontrib>Emmanuel, Yaso</creatorcontrib><creatorcontrib>Cole, Mark A</creatorcontrib><creatorcontrib>Frenneaux, Michael P</creatorcontrib><creatorcontrib>Pagano, Domenico</creatorcontrib><creatorcontrib>Clarke, Kieran</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heather, Lisa C</au><au>Howell, Neil J</au><au>Emmanuel, Yaso</au><au>Cole, Mark A</au><au>Frenneaux, Michael P</au><au>Pagano, Domenico</au><au>Clarke, Kieran</au><au>Bozza, Patricia T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Changes in cardiac substrate transporters and metabolic proteins mirror the metabolic shift in patients with aortic stenosis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-10-18</date><risdate>2011</risdate><volume>6</volume><issue>10</issue><spage>e26326</spage><epage>e26326</epage><pages>e26326-e26326</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In the hypertrophied human heart, fatty acid metabolism is decreased and glucose utilisation is increased. We hypothesized that the sarcolemmal and mitochondrial proteins involved in these key metabolic pathways would mirror these changes, providing a mechanism to account for the modified metabolic flux measured in the human heart. Echocardiography was performed to assess in vivo hypertrophy and aortic valve impairment in patients with aortic stenosis (n = 18). Cardiac biopsies were obtained during valve replacement surgery, and used for western blotting to measure metabolic protein levels. Protein levels of the predominant fatty acid transporter, fatty acid translocase (FAT/CD36) correlated negatively with levels of the glucose transporters, GLUT1 and GLUT4. The decrease in FAT/CD36 was accompanied by decreases in the fatty acid binding proteins, FABPpm and H-FABP, the β-oxidation protein medium chain acyl-coenzyme A dehydrogenase, the Krebs cycle protein α-ketoglutarate dehydrogenase and the oxidative phosphorylation protein ATP synthase. FAT/CD36 and complex I of the electron transport chain were downregulated, whereas the glucose transporter GLUT4 was upregulated with increasing left ventricular mass index, a measure of cardiac hypertrophy. In conclusion, coordinated downregulation of sequential steps involved in fatty acid and oxidative metabolism occur in the human heart, accompanied by upregulation of the glucose transporters. The profile of the substrate transporters and metabolic proteins mirror the metabolic shift from fatty acid to glucose utilisation that occurs in vivo in the human heart.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22028857</pmid><doi>10.1371/journal.pone.0026326</doi><tpages>e26326</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-10, Vol.6 (10), p.e26326-e26326
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1310228563
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects Aged
Anatomy & physiology
Angina pectoris
Aorta
Aortic stenosis
Aortic valve
Aortic valve stenosis
Aortic Valve Stenosis - blood
Aortic Valve Stenosis - metabolism
Aortic Valve Stenosis - pathology
ATP synthase
Biology
Cardiomyopathy
CD36 antigen
CD36 Antigens - metabolism
Coenzyme A
Cycle protein
Dehydrogenase
Dehydrogenases
Diabetes
Down-Regulation
Echocardiography
Electron transport
Electron transport chain
Enzymes
Fatty acid-binding protein
Fatty acids
Fatty Acids - metabolism
Female
Gene expression
Glucose
Glucose - metabolism
Glucose Transport Proteins, Facilitative - metabolism
Glucose transporter
Heart
Heart diseases
Heart failure
Heart hypertrophy
Heart surgery
Human performance
Humans
Hypertrophy
Immunoglobulins
Ketoglutaric acid
Krebs cycle
Male
Medical research
Medicine
Membrane Transport Proteins - metabolism
Metabolic flux
Metabolic pathways
Metabolism
Mitochondria
Mitochondrial Proteins - metabolism
Musculoskeletal system
Myocardium - metabolism
Myocardium - pathology
Oxidation
Oxidation-Reduction
Oxidative phosphorylation
Oxoglutarate dehydrogenase (lipoamide)
Patients
Phosphorylation
Physiological aspects
Physiology
Protein binding
Proteins
Respiration
Rodents
Surgery
Tricarboxylic acid cycle
Ventricle
Western blotting
title Changes in cardiac substrate transporters and metabolic proteins mirror the metabolic shift in patients with aortic stenosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A00%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Changes%20in%20cardiac%20substrate%20transporters%20and%20metabolic%20proteins%20mirror%20the%20metabolic%20shift%20in%20patients%20with%20aortic%20stenosis&rft.jtitle=PloS%20one&rft.au=Heather,%20Lisa%20C&rft.date=2011-10-18&rft.volume=6&rft.issue=10&rft.spage=e26326&rft.epage=e26326&rft.pages=e26326-e26326&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0026326&rft_dat=%3Cgale_plos_%3EA476867548%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c691t-28fb2ca06ff34b1bc80c0266495b3ff61141fa8bb1107f89f5fd5096a5a7e4aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1310228563&rft_id=info:pmid/22028857&rft_galeid=A476867548&rfr_iscdi=true