Loading…

Adult body weight is programmed by a redox-regulated and energy-dependent process during the pronuclear stage in mouse

In mammals fertilization triggers a series of Ca(2+) oscillations that not only are essential for events of egg activation but also stimulate oxidative phosphorylation. Little is known, however, about the relationship between quantitative changes in egg metabolism and specific long-term effects in o...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2011-12, Vol.6 (12), p.e29388-e29388
Main Authors: Banrezes, Bernadette, Sainte-Beuve, Thierry, Canon, Eugénie, Schultz, Richard M, Cancela, José, Ozil, Jean-Pierre
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In mammals fertilization triggers a series of Ca(2+) oscillations that not only are essential for events of egg activation but also stimulate oxidative phosphorylation. Little is known, however, about the relationship between quantitative changes in egg metabolism and specific long-term effects in offspring. This study assessed whether post-natal growth is modulated by early transient changes in NAD(P)H and FAD(2+) in zygotes. We report that experimentally manipulating the redox potential of fertilized eggs during the pronuclear (PN) stage affects post-natal body weight. Exogenous pyruvate induces NAD(P)H oxidation and stimulates mitochondrial activity with resulting offspring that are persistently and significantly smaller than controls. Exogenous lactate stimulates NAD(+) reduction and impairs mitochondrial activity, and produces offspring that are smaller than controls at weaning but catch up after weaning. Cytosolic alkalization increases NAD(P)(+) reduction and offspring of normal birth-weight become significantly and persistently larger than controls. These results constitute the first report that post-natal growth rate is ultimately linked to modulation of NAD(P)H and FAD(2+) concentration as early as the PN stage.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0029388