Loading…
Bioinformatic analysis and post-translational modification crosstalk prediction of lysine acetylation
Recent proteomics studies suggest high abundance and a much wider role for lysine acetylation (K-Ac) in cellular functions. Nevertheless, cross influence between K-Ac and other post-translational modifications (PTMs) has not been carefully examined. Here, we used a variety of bioinformatics tools to...
Saved in:
Published in: | PloS one 2011-12, Vol.6 (12), p.e28228-e28228 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c691t-1417de0bbc71fe892acc8dfbc72c828a27ade4d419c39a3ed8e0d5820d469b433 |
---|---|
cites | cdi_FETCH-LOGICAL-c691t-1417de0bbc71fe892acc8dfbc72c828a27ade4d419c39a3ed8e0d5820d469b433 |
container_end_page | e28228 |
container_issue | 12 |
container_start_page | e28228 |
container_title | PloS one |
container_volume | 6 |
creator | Lu, Zhike Cheng, Zhongyi Zhao, Yingming Volchenboum, Samuel L |
description | Recent proteomics studies suggest high abundance and a much wider role for lysine acetylation (K-Ac) in cellular functions. Nevertheless, cross influence between K-Ac and other post-translational modifications (PTMs) has not been carefully examined. Here, we used a variety of bioinformatics tools to analyze several available K-Ac datasets. Using gene ontology databases, we demonstrate that K-Ac sites are found in all cellular compartments. KEGG analysis indicates that the K-Ac sites are found on proteins responsible for a diverse and wide array of vital cellular functions. Domain structure prediction shows that K-Ac sites are found throughout a wide variety of protein domains, including those in heat shock proteins and those involved in cell cycle functions and DNA repair. Secondary structure prediction proves that K-Ac sites are preferentially found in ordered structures such as alpha helices and beta sheets. Finally, by mutating K-Ac sites in silico and predicting the effect on nearby phosphorylation sites, we demonstrate that the majority of lysine acetylation sites have the potential to impact protein phosphorylation, methylation, and ubiquitination status. Our work validates earlier smaller-scale studies on the acetylome and demonstrates the importance of PTM crosstalk for regulation of cellular function. |
doi_str_mv | 10.1371/journal.pone.0028228 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1311360485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476861255</galeid><doaj_id>oai_doaj_org_article_7fd0feb2400a42959f2cb6ef435f8ef9</doaj_id><sourcerecordid>A476861255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-1417de0bbc71fe892acc8dfbc72c828a27ade4d419c39a3ed8e0d5820d469b433</originalsourceid><addsrcrecordid>eNqNk0tv1DAQxyMEoqXwDRBEQgJx2MWvJM4FqVQ8VqpUidfVcuzxrosTb-0Esd8eZzetNqgHlIPtmd_8xxnPZNlzjJaYVvjdtR9CJ91y6ztYIkQ4IfxBdoprShYlQfTh0f4kexLjNUIF5WX5ODshBJeMMH6awQfrbWd8aGVvVS6T4i7amDY63_rYL_ogu-iS0ydX3nptjVX7Y66Cj7GX7le-DaCt2hu9yUeFDnKpoN8dIp9mj4x0EZ5N61n249PH7xdfFpdXn1cX55cLVda4X2CGKw2oaVSFDfCaSKW4NulIFCdckkpqYJrhWtFaUtAckC44QZqVdcMoPcteHnS3zkcxVSgKTDGmJWK8SMTqQGgvr8U22FaGnfDSir3Bh7WQIVXCgaiMRgYawhCSjNRFbYhqSjCMFoaDqZPW-ynb0LSgFXSpWG4mOvd0diPW_regJMnR8bpvJoHgbwaIvWhtVOCc7MAPUdQY1wxVeEz16h_y_p-bqLVM9x-fNaVVo6Y4Z1XJS0yKkVreQ6VPQ2tV6iZjk30W8HYWkJge_vRrOcQoVt--_j979XPOvj5iNyBdv4neDWPHxDnIDuC-4wKYuxpjJMZhuK2GGIdBTMOQwl4cv89d0G33078ZBQdu</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1311360485</pqid></control><display><type>article</type><title>Bioinformatic analysis and post-translational modification crosstalk prediction of lysine acetylation</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Lu, Zhike ; Cheng, Zhongyi ; Zhao, Yingming ; Volchenboum, Samuel L</creator><contributor>Haslam, Niall James</contributor><creatorcontrib>Lu, Zhike ; Cheng, Zhongyi ; Zhao, Yingming ; Volchenboum, Samuel L ; Haslam, Niall James</creatorcontrib><description>Recent proteomics studies suggest high abundance and a much wider role for lysine acetylation (K-Ac) in cellular functions. Nevertheless, cross influence between K-Ac and other post-translational modifications (PTMs) has not been carefully examined. Here, we used a variety of bioinformatics tools to analyze several available K-Ac datasets. Using gene ontology databases, we demonstrate that K-Ac sites are found in all cellular compartments. KEGG analysis indicates that the K-Ac sites are found on proteins responsible for a diverse and wide array of vital cellular functions. Domain structure prediction shows that K-Ac sites are found throughout a wide variety of protein domains, including those in heat shock proteins and those involved in cell cycle functions and DNA repair. Secondary structure prediction proves that K-Ac sites are preferentially found in ordered structures such as alpha helices and beta sheets. Finally, by mutating K-Ac sites in silico and predicting the effect on nearby phosphorylation sites, we demonstrate that the majority of lysine acetylation sites have the potential to impact protein phosphorylation, methylation, and ubiquitination status. Our work validates earlier smaller-scale studies on the acetylome and demonstrates the importance of PTM crosstalk for regulation of cellular function.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0028228</identifier><identifier>PMID: 22164248</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acetates ; Acetylation ; Analysis ; Animals ; Bioinformatics ; Biology ; Cancer ; Cell Cycle ; Cellular structure ; Chromatin ; Compartments ; Computational Biology - methods ; Crosstalk ; Deoxyribonucleic acid ; Diabetes ; DNA ; DNA damage ; DNA methylation ; DNA Repair ; DNA structure ; Drosophila ; Encyclopedias ; Gene Expression Regulation ; Genes ; Genomes ; Heat shock proteins ; Helices ; Humans ; Insects ; Kinases ; Localization ; Lysine ; Lysine - chemistry ; Medical research ; Methylation ; Mice ; Models, Biological ; Phosphorylation ; Post-translation ; Post-translational modifications ; Predictions ; Protein Conformation ; Protein Processing, Post-Translational ; Protein structure ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins ; Proteomics ; Proteomics - methods ; Regulation ; Secondary structure ; Signal transduction ; Studies ; Translation ; Ubiquitin ; Ubiquitin - chemistry ; Ubiquitination</subject><ispartof>PloS one, 2011-12, Vol.6 (12), p.e28228-e28228</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Lu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Lu et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-1417de0bbc71fe892acc8dfbc72c828a27ade4d419c39a3ed8e0d5820d469b433</citedby><cites>FETCH-LOGICAL-c691t-1417de0bbc71fe892acc8dfbc72c828a27ade4d419c39a3ed8e0d5820d469b433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1311360485/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1311360485?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22164248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Haslam, Niall James</contributor><creatorcontrib>Lu, Zhike</creatorcontrib><creatorcontrib>Cheng, Zhongyi</creatorcontrib><creatorcontrib>Zhao, Yingming</creatorcontrib><creatorcontrib>Volchenboum, Samuel L</creatorcontrib><title>Bioinformatic analysis and post-translational modification crosstalk prediction of lysine acetylation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Recent proteomics studies suggest high abundance and a much wider role for lysine acetylation (K-Ac) in cellular functions. Nevertheless, cross influence between K-Ac and other post-translational modifications (PTMs) has not been carefully examined. Here, we used a variety of bioinformatics tools to analyze several available K-Ac datasets. Using gene ontology databases, we demonstrate that K-Ac sites are found in all cellular compartments. KEGG analysis indicates that the K-Ac sites are found on proteins responsible for a diverse and wide array of vital cellular functions. Domain structure prediction shows that K-Ac sites are found throughout a wide variety of protein domains, including those in heat shock proteins and those involved in cell cycle functions and DNA repair. Secondary structure prediction proves that K-Ac sites are preferentially found in ordered structures such as alpha helices and beta sheets. Finally, by mutating K-Ac sites in silico and predicting the effect on nearby phosphorylation sites, we demonstrate that the majority of lysine acetylation sites have the potential to impact protein phosphorylation, methylation, and ubiquitination status. Our work validates earlier smaller-scale studies on the acetylome and demonstrates the importance of PTM crosstalk for regulation of cellular function.</description><subject>Acetates</subject><subject>Acetylation</subject><subject>Analysis</subject><subject>Animals</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Cancer</subject><subject>Cell Cycle</subject><subject>Cellular structure</subject><subject>Chromatin</subject><subject>Compartments</subject><subject>Computational Biology - methods</subject><subject>Crosstalk</subject><subject>Deoxyribonucleic acid</subject><subject>Diabetes</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA methylation</subject><subject>DNA Repair</subject><subject>DNA structure</subject><subject>Drosophila</subject><subject>Encyclopedias</subject><subject>Gene Expression Regulation</subject><subject>Genes</subject><subject>Genomes</subject><subject>Heat shock proteins</subject><subject>Helices</subject><subject>Humans</subject><subject>Insects</subject><subject>Kinases</subject><subject>Localization</subject><subject>Lysine</subject><subject>Lysine - chemistry</subject><subject>Medical research</subject><subject>Methylation</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Phosphorylation</subject><subject>Post-translation</subject><subject>Post-translational modifications</subject><subject>Predictions</subject><subject>Protein Conformation</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein structure</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Regulation</subject><subject>Secondary structure</subject><subject>Signal transduction</subject><subject>Studies</subject><subject>Translation</subject><subject>Ubiquitin</subject><subject>Ubiquitin - chemistry</subject><subject>Ubiquitination</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tv1DAQxyMEoqXwDRBEQgJx2MWvJM4FqVQ8VqpUidfVcuzxrosTb-0Esd8eZzetNqgHlIPtmd_8xxnPZNlzjJaYVvjdtR9CJ91y6ztYIkQ4IfxBdoprShYlQfTh0f4kexLjNUIF5WX5ODshBJeMMH6awQfrbWd8aGVvVS6T4i7amDY63_rYL_ogu-iS0ydX3nptjVX7Y66Cj7GX7le-DaCt2hu9yUeFDnKpoN8dIp9mj4x0EZ5N61n249PH7xdfFpdXn1cX55cLVda4X2CGKw2oaVSFDfCaSKW4NulIFCdckkpqYJrhWtFaUtAckC44QZqVdcMoPcteHnS3zkcxVSgKTDGmJWK8SMTqQGgvr8U22FaGnfDSir3Bh7WQIVXCgaiMRgYawhCSjNRFbYhqSjCMFoaDqZPW-ynb0LSgFXSpWG4mOvd0diPW_regJMnR8bpvJoHgbwaIvWhtVOCc7MAPUdQY1wxVeEz16h_y_p-bqLVM9x-fNaVVo6Y4Z1XJS0yKkVreQ6VPQ2tV6iZjk30W8HYWkJge_vRrOcQoVt--_j979XPOvj5iNyBdv4neDWPHxDnIDuC-4wKYuxpjJMZhuK2GGIdBTMOQwl4cv89d0G33078ZBQdu</recordid><startdate>20111202</startdate><enddate>20111202</enddate><creator>Lu, Zhike</creator><creator>Cheng, Zhongyi</creator><creator>Zhao, Yingming</creator><creator>Volchenboum, Samuel L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111202</creationdate><title>Bioinformatic analysis and post-translational modification crosstalk prediction of lysine acetylation</title><author>Lu, Zhike ; Cheng, Zhongyi ; Zhao, Yingming ; Volchenboum, Samuel L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-1417de0bbc71fe892acc8dfbc72c828a27ade4d419c39a3ed8e0d5820d469b433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acetates</topic><topic>Acetylation</topic><topic>Analysis</topic><topic>Animals</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Cancer</topic><topic>Cell Cycle</topic><topic>Cellular structure</topic><topic>Chromatin</topic><topic>Compartments</topic><topic>Computational Biology - methods</topic><topic>Crosstalk</topic><topic>Deoxyribonucleic acid</topic><topic>Diabetes</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA methylation</topic><topic>DNA Repair</topic><topic>DNA structure</topic><topic>Drosophila</topic><topic>Encyclopedias</topic><topic>Gene Expression Regulation</topic><topic>Genes</topic><topic>Genomes</topic><topic>Heat shock proteins</topic><topic>Helices</topic><topic>Humans</topic><topic>Insects</topic><topic>Kinases</topic><topic>Localization</topic><topic>Lysine</topic><topic>Lysine - chemistry</topic><topic>Medical research</topic><topic>Methylation</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Phosphorylation</topic><topic>Post-translation</topic><topic>Post-translational modifications</topic><topic>Predictions</topic><topic>Protein Conformation</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein structure</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Regulation</topic><topic>Secondary structure</topic><topic>Signal transduction</topic><topic>Studies</topic><topic>Translation</topic><topic>Ubiquitin</topic><topic>Ubiquitin - chemistry</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Zhike</creatorcontrib><creatorcontrib>Cheng, Zhongyi</creatorcontrib><creatorcontrib>Zhao, Yingming</creatorcontrib><creatorcontrib>Volchenboum, Samuel L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Zhike</au><au>Cheng, Zhongyi</au><au>Zhao, Yingming</au><au>Volchenboum, Samuel L</au><au>Haslam, Niall James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioinformatic analysis and post-translational modification crosstalk prediction of lysine acetylation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-12-02</date><risdate>2011</risdate><volume>6</volume><issue>12</issue><spage>e28228</spage><epage>e28228</epage><pages>e28228-e28228</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Recent proteomics studies suggest high abundance and a much wider role for lysine acetylation (K-Ac) in cellular functions. Nevertheless, cross influence between K-Ac and other post-translational modifications (PTMs) has not been carefully examined. Here, we used a variety of bioinformatics tools to analyze several available K-Ac datasets. Using gene ontology databases, we demonstrate that K-Ac sites are found in all cellular compartments. KEGG analysis indicates that the K-Ac sites are found on proteins responsible for a diverse and wide array of vital cellular functions. Domain structure prediction shows that K-Ac sites are found throughout a wide variety of protein domains, including those in heat shock proteins and those involved in cell cycle functions and DNA repair. Secondary structure prediction proves that K-Ac sites are preferentially found in ordered structures such as alpha helices and beta sheets. Finally, by mutating K-Ac sites in silico and predicting the effect on nearby phosphorylation sites, we demonstrate that the majority of lysine acetylation sites have the potential to impact protein phosphorylation, methylation, and ubiquitination status. Our work validates earlier smaller-scale studies on the acetylome and demonstrates the importance of PTM crosstalk for regulation of cellular function.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22164248</pmid><doi>10.1371/journal.pone.0028228</doi><tpages>e28228</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-12, Vol.6 (12), p.e28228-e28228 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1311360485 |
source | PubMed Central Free; Publicly Available Content Database |
subjects | Acetates Acetylation Analysis Animals Bioinformatics Biology Cancer Cell Cycle Cellular structure Chromatin Compartments Computational Biology - methods Crosstalk Deoxyribonucleic acid Diabetes DNA DNA damage DNA methylation DNA Repair DNA structure Drosophila Encyclopedias Gene Expression Regulation Genes Genomes Heat shock proteins Helices Humans Insects Kinases Localization Lysine Lysine - chemistry Medical research Methylation Mice Models, Biological Phosphorylation Post-translation Post-translational modifications Predictions Protein Conformation Protein Processing, Post-Translational Protein structure Protein Structure, Secondary Protein Structure, Tertiary Proteins Proteomics Proteomics - methods Regulation Secondary structure Signal transduction Studies Translation Ubiquitin Ubiquitin - chemistry Ubiquitination |
title | Bioinformatic analysis and post-translational modification crosstalk prediction of lysine acetylation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A46%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioinformatic%20analysis%20and%20post-translational%20modification%20crosstalk%20prediction%20of%20lysine%20acetylation&rft.jtitle=PloS%20one&rft.au=Lu,%20Zhike&rft.date=2011-12-02&rft.volume=6&rft.issue=12&rft.spage=e28228&rft.epage=e28228&rft.pages=e28228-e28228&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0028228&rft_dat=%3Cgale_plos_%3EA476861255%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c691t-1417de0bbc71fe892acc8dfbc72c828a27ade4d419c39a3ed8e0d5820d469b433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1311360485&rft_id=info:pmid/22164248&rft_galeid=A476861255&rfr_iscdi=true |