Loading…
Type I IFN promotes IL-10 production from T cells to suppress Th17 cells and Th17-associated autoimmune inflammation
Whereas the immune system is essential for host defense against pathogen infection or endogenous danger signals, dysregulated innate and adaptive immune cells may facilitate harmful inflammatory or autoimmune responses. In the CNS, chronic inflammation plays an important role in the pathogenesis of...
Saved in:
Published in: | PloS one 2011-12, Vol.6 (12), p.e28432-e28432 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c691t-27720d31dc03d9ddae13f2691fab1e19b31af4ef1ef4b07741d77568a604705b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c691t-27720d31dc03d9ddae13f2691fab1e19b31af4ef1ef4b07741d77568a604705b3 |
container_end_page | e28432 |
container_issue | 12 |
container_start_page | e28432 |
container_title | PloS one |
container_volume | 6 |
creator | Zhang, Lixia Yuan, Shunzong Cheng, Genhong Guo, Beichu |
description | Whereas the immune system is essential for host defense against pathogen infection or endogenous danger signals, dysregulated innate and adaptive immune cells may facilitate harmful inflammatory or autoimmune responses. In the CNS, chronic inflammation plays an important role in the pathogenesis of neurodegenerative diseases such as multiple sclerosis (MS). Our previous study has demonstrated a critical role for the type I IFN induction and signaling pathways in constraining Th17-mediated experimental autoimmune encephalomyelitis (EAE), an animal model of human MS. However, it remains unknown if self-reactive Th17 cells can be reprogrammed to have less encephalitogenic activities or even have regulatory effects through modulation of innate pathways. In this study, we investigated the direct effects of type I IFN on Th17 cells. Our data show that IFNβ treatment of T cells cultured under Th17 polarizing conditions resulted in reduced production of IL-17, but increased production of IL-10. We also found that IFNβ induced IL-10 production by antigen specific T cells derived from immunized mice. Furthermore, IFNβ treatment could suppress the encephalitogenic activity of myelin-specific T cells, and ameliorate clinical symptoms of EAE in an adoptive transfer model. Together, results from this study suggest that IFNβ may induce antigen-specific T cells to produce IL-10, which in turn negatively regulate Th17-mediate inflammatory and autoimmune response. |
doi_str_mv | 10.1371/journal.pone.0028432 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1311506373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476861102</galeid><doaj_id>oai_doaj_org_article_d561f5c4da2341b3b20e873d1432ac49</doaj_id><sourcerecordid>A476861102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-27720d31dc03d9ddae13f2691fab1e19b31af4ef1ef4b07741d77568a604705b3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7of-A9GAoHjRMSdpk_ZGWBZXC4MLOnob0iSd6dA2tUnF_feb7nSXqeyF9CLNOc95k7zJiaJXgFdAOXzc23HoZLPqbWdWGJMsoeRJdAo5JTEjmD49-j-JzpzbY5zSjLHn0QkhwCgGdhr5zU1vUIGKq2-oH2xrvXGoWMeAp6kela9th6qQQRukTNM45C1yY98Pxjm02QGfw7LTd9NYOmdVLb3RSI7e1m07dgbVXdXItpWT3ovoWSUbZ17O43n08-rz5vJrvL7-UlxerGPFcvAx4ZxgTUErTHWutTRAKxJSlSzBQF5SkFViKjBVUmLOE9CcpyyTDCccpyU9j94cdPvGOjEb5gRQgBQzymkgigOhrdyLfqhbOdwIK2txF7DDVsjB16oxQqcMqlQlWhKaQElLgk3GqYbgu1RJHrQ-zauNZWu0Mp0fZLMQXWa6eie29o-ghBKCeRB4PwsM9vdonBdt7SZzZWfs6EQOkCeYZRP59h_y8cPN1FaG_YcLsGFZNWmKi4SzjAFgEqjVI1T4tGlrFR5XVYf4ouDDoiAw3vz1Wzk6J4of3_-fvf61ZN8dsTsjG79zthmnF-OWYHIA1WCdG0z14DFgMfXGvRti6g0x90Yoe318Pw9F981AbwHogQeP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1311506373</pqid></control><display><type>article</type><title>Type I IFN promotes IL-10 production from T cells to suppress Th17 cells and Th17-associated autoimmune inflammation</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Zhang, Lixia ; Yuan, Shunzong ; Cheng, Genhong ; Guo, Beichu</creator><creatorcontrib>Zhang, Lixia ; Yuan, Shunzong ; Cheng, Genhong ; Guo, Beichu</creatorcontrib><description>Whereas the immune system is essential for host defense against pathogen infection or endogenous danger signals, dysregulated innate and adaptive immune cells may facilitate harmful inflammatory or autoimmune responses. In the CNS, chronic inflammation plays an important role in the pathogenesis of neurodegenerative diseases such as multiple sclerosis (MS). Our previous study has demonstrated a critical role for the type I IFN induction and signaling pathways in constraining Th17-mediated experimental autoimmune encephalomyelitis (EAE), an animal model of human MS. However, it remains unknown if self-reactive Th17 cells can be reprogrammed to have less encephalitogenic activities or even have regulatory effects through modulation of innate pathways. In this study, we investigated the direct effects of type I IFN on Th17 cells. Our data show that IFNβ treatment of T cells cultured under Th17 polarizing conditions resulted in reduced production of IL-17, but increased production of IL-10. We also found that IFNβ induced IL-10 production by antigen specific T cells derived from immunized mice. Furthermore, IFNβ treatment could suppress the encephalitogenic activity of myelin-specific T cells, and ameliorate clinical symptoms of EAE in an adoptive transfer model. Together, results from this study suggest that IFNβ may induce antigen-specific T cells to produce IL-10, which in turn negatively regulate Th17-mediate inflammatory and autoimmune response.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0028432</identifier><identifier>PMID: 22163016</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adoptive transfer ; Alleles ; Analysis ; Animal models ; Animals ; Antigens ; Autoimmune diseases ; Autoimmune Diseases - immunology ; Autoimmunity ; B cells ; Biology ; Cancer ; Cells, Cultured ; Central nervous system ; Central Nervous System - immunology ; Chronic illnesses ; Cytokines ; Encephalomyelitis, Autoimmune, Experimental - immunology ; Enzyme-Linked Immunosorbent Assay - methods ; Experimental allergic encephalomyelitis ; Flow Cytometry - methods ; Gene Expression Regulation ; Hazards ; Health aspects ; Helper cells ; Immune system ; Immunization ; Immunology ; Inflammation ; Interferon ; Interferon Type I - metabolism ; Interferon-beta - metabolism ; Interleukin 10 ; Interleukin 17 ; Interleukin-10 - metabolism ; Interleukins - metabolism ; Lymphocytes ; Lymphocytes T ; Medical research ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Multiple sclerosis ; Myelin ; Nervous system ; Nervous system diseases ; Neurodegenerative diseases ; Neurological diseases ; Pathogenesis ; Pathogens ; Rodents ; Signaling ; Studies ; T cells ; T-Lymphocytes - immunology ; T-Lymphocytes - metabolism ; Th17 Cells - metabolism</subject><ispartof>PloS one, 2011-12, Vol.6 (12), p.e28432-e28432</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Zhang et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-27720d31dc03d9ddae13f2691fab1e19b31af4ef1ef4b07741d77568a604705b3</citedby><cites>FETCH-LOGICAL-c691t-27720d31dc03d9ddae13f2691fab1e19b31af4ef1ef4b07741d77568a604705b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1311506373/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1311506373?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22163016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Lixia</creatorcontrib><creatorcontrib>Yuan, Shunzong</creatorcontrib><creatorcontrib>Cheng, Genhong</creatorcontrib><creatorcontrib>Guo, Beichu</creatorcontrib><title>Type I IFN promotes IL-10 production from T cells to suppress Th17 cells and Th17-associated autoimmune inflammation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Whereas the immune system is essential for host defense against pathogen infection or endogenous danger signals, dysregulated innate and adaptive immune cells may facilitate harmful inflammatory or autoimmune responses. In the CNS, chronic inflammation plays an important role in the pathogenesis of neurodegenerative diseases such as multiple sclerosis (MS). Our previous study has demonstrated a critical role for the type I IFN induction and signaling pathways in constraining Th17-mediated experimental autoimmune encephalomyelitis (EAE), an animal model of human MS. However, it remains unknown if self-reactive Th17 cells can be reprogrammed to have less encephalitogenic activities or even have regulatory effects through modulation of innate pathways. In this study, we investigated the direct effects of type I IFN on Th17 cells. Our data show that IFNβ treatment of T cells cultured under Th17 polarizing conditions resulted in reduced production of IL-17, but increased production of IL-10. We also found that IFNβ induced IL-10 production by antigen specific T cells derived from immunized mice. Furthermore, IFNβ treatment could suppress the encephalitogenic activity of myelin-specific T cells, and ameliorate clinical symptoms of EAE in an adoptive transfer model. Together, results from this study suggest that IFNβ may induce antigen-specific T cells to produce IL-10, which in turn negatively regulate Th17-mediate inflammatory and autoimmune response.</description><subject>Adoptive transfer</subject><subject>Alleles</subject><subject>Analysis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antigens</subject><subject>Autoimmune diseases</subject><subject>Autoimmune Diseases - immunology</subject><subject>Autoimmunity</subject><subject>B cells</subject><subject>Biology</subject><subject>Cancer</subject><subject>Cells, Cultured</subject><subject>Central nervous system</subject><subject>Central Nervous System - immunology</subject><subject>Chronic illnesses</subject><subject>Cytokines</subject><subject>Encephalomyelitis, Autoimmune, Experimental - immunology</subject><subject>Enzyme-Linked Immunosorbent Assay - methods</subject><subject>Experimental allergic encephalomyelitis</subject><subject>Flow Cytometry - methods</subject><subject>Gene Expression Regulation</subject><subject>Hazards</subject><subject>Health aspects</subject><subject>Helper cells</subject><subject>Immune system</subject><subject>Immunization</subject><subject>Immunology</subject><subject>Inflammation</subject><subject>Interferon</subject><subject>Interferon Type I - metabolism</subject><subject>Interferon-beta - metabolism</subject><subject>Interleukin 10</subject><subject>Interleukin 17</subject><subject>Interleukin-10 - metabolism</subject><subject>Interleukins - metabolism</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Medical research</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Multiple sclerosis</subject><subject>Myelin</subject><subject>Nervous system</subject><subject>Nervous system diseases</subject><subject>Neurodegenerative diseases</subject><subject>Neurological diseases</subject><subject>Pathogenesis</subject><subject>Pathogens</subject><subject>Rodents</subject><subject>Signaling</subject><subject>Studies</subject><subject>T cells</subject><subject>T-Lymphocytes - immunology</subject><subject>T-Lymphocytes - metabolism</subject><subject>Th17 Cells - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7of-A9GAoHjRMSdpk_ZGWBZXC4MLOnob0iSd6dA2tUnF_feb7nSXqeyF9CLNOc95k7zJiaJXgFdAOXzc23HoZLPqbWdWGJMsoeRJdAo5JTEjmD49-j-JzpzbY5zSjLHn0QkhwCgGdhr5zU1vUIGKq2-oH2xrvXGoWMeAp6kela9th6qQQRukTNM45C1yY98Pxjm02QGfw7LTd9NYOmdVLb3RSI7e1m07dgbVXdXItpWT3ovoWSUbZ17O43n08-rz5vJrvL7-UlxerGPFcvAx4ZxgTUErTHWutTRAKxJSlSzBQF5SkFViKjBVUmLOE9CcpyyTDCccpyU9j94cdPvGOjEb5gRQgBQzymkgigOhrdyLfqhbOdwIK2txF7DDVsjB16oxQqcMqlQlWhKaQElLgk3GqYbgu1RJHrQ-zauNZWu0Mp0fZLMQXWa6eie29o-ghBKCeRB4PwsM9vdonBdt7SZzZWfs6EQOkCeYZRP59h_y8cPN1FaG_YcLsGFZNWmKi4SzjAFgEqjVI1T4tGlrFR5XVYf4ouDDoiAw3vz1Wzk6J4of3_-fvf61ZN8dsTsjG79zthmnF-OWYHIA1WCdG0z14DFgMfXGvRti6g0x90Yoe318Pw9F981AbwHogQeP</recordid><startdate>20111206</startdate><enddate>20111206</enddate><creator>Zhang, Lixia</creator><creator>Yuan, Shunzong</creator><creator>Cheng, Genhong</creator><creator>Guo, Beichu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111206</creationdate><title>Type I IFN promotes IL-10 production from T cells to suppress Th17 cells and Th17-associated autoimmune inflammation</title><author>Zhang, Lixia ; Yuan, Shunzong ; Cheng, Genhong ; Guo, Beichu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-27720d31dc03d9ddae13f2691fab1e19b31af4ef1ef4b07741d77568a604705b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adoptive transfer</topic><topic>Alleles</topic><topic>Analysis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antigens</topic><topic>Autoimmune diseases</topic><topic>Autoimmune Diseases - immunology</topic><topic>Autoimmunity</topic><topic>B cells</topic><topic>Biology</topic><topic>Cancer</topic><topic>Cells, Cultured</topic><topic>Central nervous system</topic><topic>Central Nervous System - immunology</topic><topic>Chronic illnesses</topic><topic>Cytokines</topic><topic>Encephalomyelitis, Autoimmune, Experimental - immunology</topic><topic>Enzyme-Linked Immunosorbent Assay - methods</topic><topic>Experimental allergic encephalomyelitis</topic><topic>Flow Cytometry - methods</topic><topic>Gene Expression Regulation</topic><topic>Hazards</topic><topic>Health aspects</topic><topic>Helper cells</topic><topic>Immune system</topic><topic>Immunization</topic><topic>Immunology</topic><topic>Inflammation</topic><topic>Interferon</topic><topic>Interferon Type I - metabolism</topic><topic>Interferon-beta - metabolism</topic><topic>Interleukin 10</topic><topic>Interleukin 17</topic><topic>Interleukin-10 - metabolism</topic><topic>Interleukins - metabolism</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Medical research</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Multiple sclerosis</topic><topic>Myelin</topic><topic>Nervous system</topic><topic>Nervous system diseases</topic><topic>Neurodegenerative diseases</topic><topic>Neurological diseases</topic><topic>Pathogenesis</topic><topic>Pathogens</topic><topic>Rodents</topic><topic>Signaling</topic><topic>Studies</topic><topic>T cells</topic><topic>T-Lymphocytes - immunology</topic><topic>T-Lymphocytes - metabolism</topic><topic>Th17 Cells - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lixia</creatorcontrib><creatorcontrib>Yuan, Shunzong</creatorcontrib><creatorcontrib>Cheng, Genhong</creatorcontrib><creatorcontrib>Guo, Beichu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lixia</au><au>Yuan, Shunzong</au><au>Cheng, Genhong</au><au>Guo, Beichu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Type I IFN promotes IL-10 production from T cells to suppress Th17 cells and Th17-associated autoimmune inflammation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-12-06</date><risdate>2011</risdate><volume>6</volume><issue>12</issue><spage>e28432</spage><epage>e28432</epage><pages>e28432-e28432</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Whereas the immune system is essential for host defense against pathogen infection or endogenous danger signals, dysregulated innate and adaptive immune cells may facilitate harmful inflammatory or autoimmune responses. In the CNS, chronic inflammation plays an important role in the pathogenesis of neurodegenerative diseases such as multiple sclerosis (MS). Our previous study has demonstrated a critical role for the type I IFN induction and signaling pathways in constraining Th17-mediated experimental autoimmune encephalomyelitis (EAE), an animal model of human MS. However, it remains unknown if self-reactive Th17 cells can be reprogrammed to have less encephalitogenic activities or even have regulatory effects through modulation of innate pathways. In this study, we investigated the direct effects of type I IFN on Th17 cells. Our data show that IFNβ treatment of T cells cultured under Th17 polarizing conditions resulted in reduced production of IL-17, but increased production of IL-10. We also found that IFNβ induced IL-10 production by antigen specific T cells derived from immunized mice. Furthermore, IFNβ treatment could suppress the encephalitogenic activity of myelin-specific T cells, and ameliorate clinical symptoms of EAE in an adoptive transfer model. Together, results from this study suggest that IFNβ may induce antigen-specific T cells to produce IL-10, which in turn negatively regulate Th17-mediate inflammatory and autoimmune response.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22163016</pmid><doi>10.1371/journal.pone.0028432</doi><tpages>e28432</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-12, Vol.6 (12), p.e28432-e28432 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1311506373 |
source | Publicly Available Content Database; PubMed Central |
subjects | Adoptive transfer Alleles Analysis Animal models Animals Antigens Autoimmune diseases Autoimmune Diseases - immunology Autoimmunity B cells Biology Cancer Cells, Cultured Central nervous system Central Nervous System - immunology Chronic illnesses Cytokines Encephalomyelitis, Autoimmune, Experimental - immunology Enzyme-Linked Immunosorbent Assay - methods Experimental allergic encephalomyelitis Flow Cytometry - methods Gene Expression Regulation Hazards Health aspects Helper cells Immune system Immunization Immunology Inflammation Interferon Interferon Type I - metabolism Interferon-beta - metabolism Interleukin 10 Interleukin 17 Interleukin-10 - metabolism Interleukins - metabolism Lymphocytes Lymphocytes T Medical research Mice Mice, Inbred C57BL Mice, Knockout Multiple sclerosis Myelin Nervous system Nervous system diseases Neurodegenerative diseases Neurological diseases Pathogenesis Pathogens Rodents Signaling Studies T cells T-Lymphocytes - immunology T-Lymphocytes - metabolism Th17 Cells - metabolism |
title | Type I IFN promotes IL-10 production from T cells to suppress Th17 cells and Th17-associated autoimmune inflammation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A07%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Type%20I%20IFN%20promotes%20IL-10%20production%20from%20T%20cells%20to%20suppress%20Th17%20cells%20and%20Th17-associated%20autoimmune%20inflammation&rft.jtitle=PloS%20one&rft.au=Zhang,%20Lixia&rft.date=2011-12-06&rft.volume=6&rft.issue=12&rft.spage=e28432&rft.epage=e28432&rft.pages=e28432-e28432&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0028432&rft_dat=%3Cgale_plos_%3EA476861102%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c691t-27720d31dc03d9ddae13f2691fab1e19b31af4ef1ef4b07741d77568a604705b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1311506373&rft_id=info:pmid/22163016&rft_galeid=A476861102&rfr_iscdi=true |