Loading…
Simulation of postsynaptic glutamate receptors reveals critical features of glutamatergic transmission
Activation of several subtypes of glutamate receptors contributes to changes in postsynaptic calcium concentration at hippocampal synapses, resulting in various types of changes in synaptic strength. Thus, while activation of NMDA receptors has been shown to be critical for long-term potentiation (L...
Saved in:
Published in: | PloS one 2011-12, Vol.6 (12), p.e28380-e28380 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c691t-a8a4a1b96ce2a809431c596a83cb1c6308f91fbaab27a2d7a80f0776422c7bb93 |
---|---|
cites | cdi_FETCH-LOGICAL-c691t-a8a4a1b96ce2a809431c596a83cb1c6308f91fbaab27a2d7a80f0776422c7bb93 |
container_end_page | e28380 |
container_issue | 12 |
container_start_page | e28380 |
container_title | PloS one |
container_volume | 6 |
creator | Greget, Renaud Pernot, Fabien Bouteiller, Jean-Marie C Ghaderi, Viviane Allam, Sushmita Keller, Anne Florence Ambert, Nicolas Legendre, Arnaud Sarmis, Merdan Haeberle, Olivier Faupel, Michel Bischoff, Serge Berger, Theodore W Baudry, Michel |
description | Activation of several subtypes of glutamate receptors contributes to changes in postsynaptic calcium concentration at hippocampal synapses, resulting in various types of changes in synaptic strength. Thus, while activation of NMDA receptors has been shown to be critical for long-term potentiation (LTP) and long term depression (LTD) of synaptic transmission, activation of metabotropic glutamate receptors (mGluRs) has been linked to either LTP or LTD. While it is generally admitted that dynamic changes in postsynaptic calcium concentration represent the critical elements to determine the direction and amplitude of the changes in synaptic strength, it has been difficult to quantitatively estimate the relative contribution of the different types of glutamate receptors to these changes under different experimental conditions. Here we present a detailed model of a postsynaptic glutamatergic synapse that incorporates ionotropic and mGluR type I receptors, and we use this model to determine the role of the different receptors to the dynamics of postsynaptic calcium with different patterns of presynaptic activation. Our modeling framework includes glutamate vesicular release and diffusion in the cleft and a glutamate transporter that modulates extracellular glutamate concentration. Our results indicate that the contribution of mGluRs to changes in postsynaptic calcium concentration is minimal under basal stimulation conditions and becomes apparent only at high frequency of stimulation. Furthermore, the location of mGluRs in the postsynaptic membrane is also a critical factor, as activation of distant receptors contributes significantly less to calcium dynamics than more centrally located ones. These results confirm the important role of glutamate transporters and of the localization of mGluRs in postsynaptic sites in their signaling properties, and further strengthen the notion that mGluR activation significantly contributes to postsynaptic calcium dynamics only following high-frequency stimulation. They also provide a new tool to analyze the interactions between metabotropic and ionotropic glutamate receptors. |
doi_str_mv | 10.1371/journal.pone.0028380 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1312186427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476860181</galeid><doaj_id>oai_doaj_org_article_37b6d6ae18fc45169ec3dbb72b5e6093</doaj_id><sourcerecordid>A476860181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-a8a4a1b96ce2a809431c596a83cb1c6308f91fbaab27a2d7a80f0776422c7bb93</originalsourceid><addsrcrecordid>eNqNk1-L1DAUxYso7rr6DUQLguLDjPnTSZMXYVlWHVhYcNXXcJumnQ5tU5N0cb_93nG6w1T2QfrQkP7OSe7tuUnympIl5Tn9tHWj76FdDq63S0KY5JI8SU6p4mwhGOFPj9YnyYsQtoSsuBTieXLCGFWZ5OQ0qW6abmwhNq5PXZUOLsRw18MQG5PW7Rihg2hTb40dovMBV7cW2pAa3yACbVpZiKO3Yac-CHyN8uihD10TAnq_TJ5VKLOvpvdZ8vPL5Y-Lb4ur66_ri_OrhRGKxgVIyIAWShjLQBKVcWpWSoDkpqBGcCIrRasCoGA5sDJHpiJ5LjLGTF4Uip8lb_e-Q-uCnloUNOWUUYlYjsR6T5QOtnrwTQf-Tjto9N8N52sNHktrreZ5IUoBlsrKZCsqlDW8LIqcFSsriOLo9Xk6bSw6WxrbY83tzHT-pW82una3mrOMCCrR4MNk4N3v0YaosV_Gti301o1BK8oEV6ucIPnuH_Lx4iaqBrx_01cOjzU7T32e5UIKQiVFavkIhU9pu8ZgnKoG92eCjzMBMtH-iTWMIej1zff_Z69_zdn3R-wGgxU3wWGIMDFhDmZ70HgXgrfVoceU6N00PHRD76ZBT9OAsjfH_-cgeog_vwcOagco</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312186427</pqid></control><display><type>article</type><title>Simulation of postsynaptic glutamate receptors reveals critical features of glutamatergic transmission</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Greget, Renaud ; Pernot, Fabien ; Bouteiller, Jean-Marie C ; Ghaderi, Viviane ; Allam, Sushmita ; Keller, Anne Florence ; Ambert, Nicolas ; Legendre, Arnaud ; Sarmis, Merdan ; Haeberle, Olivier ; Faupel, Michel ; Bischoff, Serge ; Berger, Theodore W ; Baudry, Michel</creator><contributor>Jenkins, Andrew</contributor><creatorcontrib>Greget, Renaud ; Pernot, Fabien ; Bouteiller, Jean-Marie C ; Ghaderi, Viviane ; Allam, Sushmita ; Keller, Anne Florence ; Ambert, Nicolas ; Legendre, Arnaud ; Sarmis, Merdan ; Haeberle, Olivier ; Faupel, Michel ; Bischoff, Serge ; Berger, Theodore W ; Baudry, Michel ; Jenkins, Andrew</creatorcontrib><description>Activation of several subtypes of glutamate receptors contributes to changes in postsynaptic calcium concentration at hippocampal synapses, resulting in various types of changes in synaptic strength. Thus, while activation of NMDA receptors has been shown to be critical for long-term potentiation (LTP) and long term depression (LTD) of synaptic transmission, activation of metabotropic glutamate receptors (mGluRs) has been linked to either LTP or LTD. While it is generally admitted that dynamic changes in postsynaptic calcium concentration represent the critical elements to determine the direction and amplitude of the changes in synaptic strength, it has been difficult to quantitatively estimate the relative contribution of the different types of glutamate receptors to these changes under different experimental conditions. Here we present a detailed model of a postsynaptic glutamatergic synapse that incorporates ionotropic and mGluR type I receptors, and we use this model to determine the role of the different receptors to the dynamics of postsynaptic calcium with different patterns of presynaptic activation. Our modeling framework includes glutamate vesicular release and diffusion in the cleft and a glutamate transporter that modulates extracellular glutamate concentration. Our results indicate that the contribution of mGluRs to changes in postsynaptic calcium concentration is minimal under basal stimulation conditions and becomes apparent only at high frequency of stimulation. Furthermore, the location of mGluRs in the postsynaptic membrane is also a critical factor, as activation of distant receptors contributes significantly less to calcium dynamics than more centrally located ones. These results confirm the important role of glutamate transporters and of the localization of mGluRs in postsynaptic sites in their signaling properties, and further strengthen the notion that mGluR activation significantly contributes to postsynaptic calcium dynamics only following high-frequency stimulation. They also provide a new tool to analyze the interactions between metabotropic and ionotropic glutamate receptors.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0028380</identifier><identifier>PMID: 22194830</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activation ; Amino Acid Transport System X-AG - metabolism ; Amino acids ; Analysis ; Biology ; Biomedical engineering ; CA1 Region, Hippocampal - metabolism ; Calcium ; Calcium - metabolism ; Calcium content ; Calcium Signaling ; Calcium signalling ; Calibration ; Computer Simulation ; Cytosol - metabolism ; Dendritic Spines - metabolism ; Diffusion ; Endoplasmic reticulum ; Engineering ; Glutamate ; Glutamatergic transmission ; Glutamic Acid - metabolism ; Glutamic acid receptors (ionotropic) ; Glutamic acid receptors (metabotropic) ; Glutamic acid transporter ; Hippocampus ; Homeostasis ; Inositol 1,4,5-Trisphosphate Receptors - metabolism ; Kinases ; Localization ; Long-term potentiation ; Models, Biological ; N-Methyl-D-aspartic acid receptors ; Neurosciences ; Receptors ; Receptors, AMPA - metabolism ; Receptors, Glutamate - metabolism ; Receptors, Ionotropic Glutamate - metabolism ; Receptors, Metabotropic Glutamate - metabolism ; Receptors, N-Methyl-D-Aspartate - metabolism ; Rodents ; Signal transduction ; Simulation ; Stimulation ; Synapses ; Synapses - metabolism ; Synaptic strength ; Synaptic transmission ; Synaptic Transmission - physiology</subject><ispartof>PloS one, 2011-12, Vol.6 (12), p.e28380-e28380</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Greget et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Greget et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-a8a4a1b96ce2a809431c596a83cb1c6308f91fbaab27a2d7a80f0776422c7bb93</citedby><cites>FETCH-LOGICAL-c691t-a8a4a1b96ce2a809431c596a83cb1c6308f91fbaab27a2d7a80f0776422c7bb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1312186427/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1312186427?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25736,27907,27908,36995,36996,44573,53774,53776,74877</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22194830$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Jenkins, Andrew</contributor><creatorcontrib>Greget, Renaud</creatorcontrib><creatorcontrib>Pernot, Fabien</creatorcontrib><creatorcontrib>Bouteiller, Jean-Marie C</creatorcontrib><creatorcontrib>Ghaderi, Viviane</creatorcontrib><creatorcontrib>Allam, Sushmita</creatorcontrib><creatorcontrib>Keller, Anne Florence</creatorcontrib><creatorcontrib>Ambert, Nicolas</creatorcontrib><creatorcontrib>Legendre, Arnaud</creatorcontrib><creatorcontrib>Sarmis, Merdan</creatorcontrib><creatorcontrib>Haeberle, Olivier</creatorcontrib><creatorcontrib>Faupel, Michel</creatorcontrib><creatorcontrib>Bischoff, Serge</creatorcontrib><creatorcontrib>Berger, Theodore W</creatorcontrib><creatorcontrib>Baudry, Michel</creatorcontrib><title>Simulation of postsynaptic glutamate receptors reveals critical features of glutamatergic transmission</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Activation of several subtypes of glutamate receptors contributes to changes in postsynaptic calcium concentration at hippocampal synapses, resulting in various types of changes in synaptic strength. Thus, while activation of NMDA receptors has been shown to be critical for long-term potentiation (LTP) and long term depression (LTD) of synaptic transmission, activation of metabotropic glutamate receptors (mGluRs) has been linked to either LTP or LTD. While it is generally admitted that dynamic changes in postsynaptic calcium concentration represent the critical elements to determine the direction and amplitude of the changes in synaptic strength, it has been difficult to quantitatively estimate the relative contribution of the different types of glutamate receptors to these changes under different experimental conditions. Here we present a detailed model of a postsynaptic glutamatergic synapse that incorporates ionotropic and mGluR type I receptors, and we use this model to determine the role of the different receptors to the dynamics of postsynaptic calcium with different patterns of presynaptic activation. Our modeling framework includes glutamate vesicular release and diffusion in the cleft and a glutamate transporter that modulates extracellular glutamate concentration. Our results indicate that the contribution of mGluRs to changes in postsynaptic calcium concentration is minimal under basal stimulation conditions and becomes apparent only at high frequency of stimulation. Furthermore, the location of mGluRs in the postsynaptic membrane is also a critical factor, as activation of distant receptors contributes significantly less to calcium dynamics than more centrally located ones. These results confirm the important role of glutamate transporters and of the localization of mGluRs in postsynaptic sites in their signaling properties, and further strengthen the notion that mGluR activation significantly contributes to postsynaptic calcium dynamics only following high-frequency stimulation. They also provide a new tool to analyze the interactions between metabotropic and ionotropic glutamate receptors.</description><subject>Activation</subject><subject>Amino Acid Transport System X-AG - metabolism</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Biology</subject><subject>Biomedical engineering</subject><subject>CA1 Region, Hippocampal - metabolism</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium content</subject><subject>Calcium Signaling</subject><subject>Calcium signalling</subject><subject>Calibration</subject><subject>Computer Simulation</subject><subject>Cytosol - metabolism</subject><subject>Dendritic Spines - metabolism</subject><subject>Diffusion</subject><subject>Endoplasmic reticulum</subject><subject>Engineering</subject><subject>Glutamate</subject><subject>Glutamatergic transmission</subject><subject>Glutamic Acid - metabolism</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>Glutamic acid receptors (metabotropic)</subject><subject>Glutamic acid transporter</subject><subject>Hippocampus</subject><subject>Homeostasis</subject><subject>Inositol 1,4,5-Trisphosphate Receptors - metabolism</subject><subject>Kinases</subject><subject>Localization</subject><subject>Long-term potentiation</subject><subject>Models, Biological</subject><subject>N-Methyl-D-aspartic acid receptors</subject><subject>Neurosciences</subject><subject>Receptors</subject><subject>Receptors, AMPA - metabolism</subject><subject>Receptors, Glutamate - metabolism</subject><subject>Receptors, Ionotropic Glutamate - metabolism</subject><subject>Receptors, Metabotropic Glutamate - metabolism</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Simulation</subject><subject>Stimulation</subject><subject>Synapses</subject><subject>Synapses - metabolism</subject><subject>Synaptic strength</subject><subject>Synaptic transmission</subject><subject>Synaptic Transmission - physiology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1-L1DAUxYso7rr6DUQLguLDjPnTSZMXYVlWHVhYcNXXcJumnQ5tU5N0cb_93nG6w1T2QfrQkP7OSe7tuUnympIl5Tn9tHWj76FdDq63S0KY5JI8SU6p4mwhGOFPj9YnyYsQtoSsuBTieXLCGFWZ5OQ0qW6abmwhNq5PXZUOLsRw18MQG5PW7Rihg2hTb40dovMBV7cW2pAa3yACbVpZiKO3Yac-CHyN8uihD10TAnq_TJ5VKLOvpvdZ8vPL5Y-Lb4ur66_ri_OrhRGKxgVIyIAWShjLQBKVcWpWSoDkpqBGcCIrRasCoGA5sDJHpiJ5LjLGTF4Uip8lb_e-Q-uCnloUNOWUUYlYjsR6T5QOtnrwTQf-Tjto9N8N52sNHktrreZ5IUoBlsrKZCsqlDW8LIqcFSsriOLo9Xk6bSw6WxrbY83tzHT-pW82una3mrOMCCrR4MNk4N3v0YaosV_Gti301o1BK8oEV6ucIPnuH_Lx4iaqBrx_01cOjzU7T32e5UIKQiVFavkIhU9pu8ZgnKoG92eCjzMBMtH-iTWMIej1zff_Z69_zdn3R-wGgxU3wWGIMDFhDmZ70HgXgrfVoceU6N00PHRD76ZBT9OAsjfH_-cgeog_vwcOagco</recordid><startdate>20111215</startdate><enddate>20111215</enddate><creator>Greget, Renaud</creator><creator>Pernot, Fabien</creator><creator>Bouteiller, Jean-Marie C</creator><creator>Ghaderi, Viviane</creator><creator>Allam, Sushmita</creator><creator>Keller, Anne Florence</creator><creator>Ambert, Nicolas</creator><creator>Legendre, Arnaud</creator><creator>Sarmis, Merdan</creator><creator>Haeberle, Olivier</creator><creator>Faupel, Michel</creator><creator>Bischoff, Serge</creator><creator>Berger, Theodore W</creator><creator>Baudry, Michel</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111215</creationdate><title>Simulation of postsynaptic glutamate receptors reveals critical features of glutamatergic transmission</title><author>Greget, Renaud ; Pernot, Fabien ; Bouteiller, Jean-Marie C ; Ghaderi, Viviane ; Allam, Sushmita ; Keller, Anne Florence ; Ambert, Nicolas ; Legendre, Arnaud ; Sarmis, Merdan ; Haeberle, Olivier ; Faupel, Michel ; Bischoff, Serge ; Berger, Theodore W ; Baudry, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-a8a4a1b96ce2a809431c596a83cb1c6308f91fbaab27a2d7a80f0776422c7bb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Activation</topic><topic>Amino Acid Transport System X-AG - metabolism</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Biology</topic><topic>Biomedical engineering</topic><topic>CA1 Region, Hippocampal - metabolism</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium content</topic><topic>Calcium Signaling</topic><topic>Calcium signalling</topic><topic>Calibration</topic><topic>Computer Simulation</topic><topic>Cytosol - metabolism</topic><topic>Dendritic Spines - metabolism</topic><topic>Diffusion</topic><topic>Endoplasmic reticulum</topic><topic>Engineering</topic><topic>Glutamate</topic><topic>Glutamatergic transmission</topic><topic>Glutamic Acid - metabolism</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>Glutamic acid receptors (metabotropic)</topic><topic>Glutamic acid transporter</topic><topic>Hippocampus</topic><topic>Homeostasis</topic><topic>Inositol 1,4,5-Trisphosphate Receptors - metabolism</topic><topic>Kinases</topic><topic>Localization</topic><topic>Long-term potentiation</topic><topic>Models, Biological</topic><topic>N-Methyl-D-aspartic acid receptors</topic><topic>Neurosciences</topic><topic>Receptors</topic><topic>Receptors, AMPA - metabolism</topic><topic>Receptors, Glutamate - metabolism</topic><topic>Receptors, Ionotropic Glutamate - metabolism</topic><topic>Receptors, Metabotropic Glutamate - metabolism</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Simulation</topic><topic>Stimulation</topic><topic>Synapses</topic><topic>Synapses - metabolism</topic><topic>Synaptic strength</topic><topic>Synaptic transmission</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greget, Renaud</creatorcontrib><creatorcontrib>Pernot, Fabien</creatorcontrib><creatorcontrib>Bouteiller, Jean-Marie C</creatorcontrib><creatorcontrib>Ghaderi, Viviane</creatorcontrib><creatorcontrib>Allam, Sushmita</creatorcontrib><creatorcontrib>Keller, Anne Florence</creatorcontrib><creatorcontrib>Ambert, Nicolas</creatorcontrib><creatorcontrib>Legendre, Arnaud</creatorcontrib><creatorcontrib>Sarmis, Merdan</creatorcontrib><creatorcontrib>Haeberle, Olivier</creatorcontrib><creatorcontrib>Faupel, Michel</creatorcontrib><creatorcontrib>Bischoff, Serge</creatorcontrib><creatorcontrib>Berger, Theodore W</creatorcontrib><creatorcontrib>Baudry, Michel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greget, Renaud</au><au>Pernot, Fabien</au><au>Bouteiller, Jean-Marie C</au><au>Ghaderi, Viviane</au><au>Allam, Sushmita</au><au>Keller, Anne Florence</au><au>Ambert, Nicolas</au><au>Legendre, Arnaud</au><au>Sarmis, Merdan</au><au>Haeberle, Olivier</au><au>Faupel, Michel</au><au>Bischoff, Serge</au><au>Berger, Theodore W</au><au>Baudry, Michel</au><au>Jenkins, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of postsynaptic glutamate receptors reveals critical features of glutamatergic transmission</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-12-15</date><risdate>2011</risdate><volume>6</volume><issue>12</issue><spage>e28380</spage><epage>e28380</epage><pages>e28380-e28380</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Activation of several subtypes of glutamate receptors contributes to changes in postsynaptic calcium concentration at hippocampal synapses, resulting in various types of changes in synaptic strength. Thus, while activation of NMDA receptors has been shown to be critical for long-term potentiation (LTP) and long term depression (LTD) of synaptic transmission, activation of metabotropic glutamate receptors (mGluRs) has been linked to either LTP or LTD. While it is generally admitted that dynamic changes in postsynaptic calcium concentration represent the critical elements to determine the direction and amplitude of the changes in synaptic strength, it has been difficult to quantitatively estimate the relative contribution of the different types of glutamate receptors to these changes under different experimental conditions. Here we present a detailed model of a postsynaptic glutamatergic synapse that incorporates ionotropic and mGluR type I receptors, and we use this model to determine the role of the different receptors to the dynamics of postsynaptic calcium with different patterns of presynaptic activation. Our modeling framework includes glutamate vesicular release and diffusion in the cleft and a glutamate transporter that modulates extracellular glutamate concentration. Our results indicate that the contribution of mGluRs to changes in postsynaptic calcium concentration is minimal under basal stimulation conditions and becomes apparent only at high frequency of stimulation. Furthermore, the location of mGluRs in the postsynaptic membrane is also a critical factor, as activation of distant receptors contributes significantly less to calcium dynamics than more centrally located ones. These results confirm the important role of glutamate transporters and of the localization of mGluRs in postsynaptic sites in their signaling properties, and further strengthen the notion that mGluR activation significantly contributes to postsynaptic calcium dynamics only following high-frequency stimulation. They also provide a new tool to analyze the interactions between metabotropic and ionotropic glutamate receptors.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22194830</pmid><doi>10.1371/journal.pone.0028380</doi><tpages>e28380</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-12, Vol.6 (12), p.e28380-e28380 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1312186427 |
source | Publicly Available Content Database; PubMed Central |
subjects | Activation Amino Acid Transport System X-AG - metabolism Amino acids Analysis Biology Biomedical engineering CA1 Region, Hippocampal - metabolism Calcium Calcium - metabolism Calcium content Calcium Signaling Calcium signalling Calibration Computer Simulation Cytosol - metabolism Dendritic Spines - metabolism Diffusion Endoplasmic reticulum Engineering Glutamate Glutamatergic transmission Glutamic Acid - metabolism Glutamic acid receptors (ionotropic) Glutamic acid receptors (metabotropic) Glutamic acid transporter Hippocampus Homeostasis Inositol 1,4,5-Trisphosphate Receptors - metabolism Kinases Localization Long-term potentiation Models, Biological N-Methyl-D-aspartic acid receptors Neurosciences Receptors Receptors, AMPA - metabolism Receptors, Glutamate - metabolism Receptors, Ionotropic Glutamate - metabolism Receptors, Metabotropic Glutamate - metabolism Receptors, N-Methyl-D-Aspartate - metabolism Rodents Signal transduction Simulation Stimulation Synapses Synapses - metabolism Synaptic strength Synaptic transmission Synaptic Transmission - physiology |
title | Simulation of postsynaptic glutamate receptors reveals critical features of glutamatergic transmission |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20postsynaptic%20glutamate%20receptors%20reveals%20critical%20features%20of%20glutamatergic%20transmission&rft.jtitle=PloS%20one&rft.au=Greget,%20Renaud&rft.date=2011-12-15&rft.volume=6&rft.issue=12&rft.spage=e28380&rft.epage=e28380&rft.pages=e28380-e28380&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0028380&rft_dat=%3Cgale_plos_%3EA476860181%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c691t-a8a4a1b96ce2a809431c596a83cb1c6308f91fbaab27a2d7a80f0776422c7bb93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1312186427&rft_id=info:pmid/22194830&rft_galeid=A476860181&rfr_iscdi=true |