Loading…

Processing of genome 5' termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction

Innate immunity is critically dependent on the rapid production of interferon in response to intruding viruses. The intracellular pathogen recognition receptors RIG-I and MDA5 are essential for interferon induction by viral RNAs containing 5' triphosphates or double-stranded structures, respect...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2008-04, Vol.3 (4), p.e2032-e2032
Main Authors: Habjan, Matthias, Andersson, Ida, Klingström, Jonas, Schümann, Michael, Martin, Arnold, Zimmermann, Petra, Wagner, Valentina, Pichlmair, Andreas, Schneider, Urs, Mühlberger, Elke, Mirazimi, Ali, Weber, Friedemann
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Innate immunity is critically dependent on the rapid production of interferon in response to intruding viruses. The intracellular pathogen recognition receptors RIG-I and MDA5 are essential for interferon induction by viral RNAs containing 5' triphosphates or double-stranded structures, respectively. Viruses with a negative-stranded RNA genome are an important group of pathogens causing emerging and re-emerging diseases. We investigated the ability of genomic RNAs from substantial representatives of this virus group to induce interferon via RIG-I or MDA5. RNAs isolated from particles of Ebola virus, Nipah virus, Lassa virus, and Rift Valley fever virus strongly activated the interferon-beta promoter. Knockdown experiments demonstrated that interferon induction depended on RIG-I, but not MDA5, and phosphatase treatment revealed a requirement for the RNA 5' triphosphate group. In contrast, genomic RNAs of Hantaan virus, Crimean-Congo hemorrhagic fever virus and Borna disease virus did not trigger interferon induction. Sensitivity of these RNAs to a 5' monophosphate-specific exonuclease indicates that the RIG-I-activating 5' triphosphate group was removed post-transcriptionally by a viral function. Consequently, RIG-I is unable to bind the RNAs of Hantaan virus, Crimean-Congo hemorrhagic fever virus and Borna disease virus. These results establish RIG-I as a major intracellular recognition receptor for the genome of most negative-strand RNA viruses and define the cleavage of triphosphates at the RNA 5' end as a strategy of viruses to evade the innate immune response.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0002032