Loading…
Bottom-up assembly of hydrogels from bacteriophage and Au nanoparticles: the effect of cis- and trans-acting factors
Hydrogels have become a promising research focus because of their potential for biomedical application. Here we explore the long-range, electrostatic interactions by following the effect of trans-acting (pH) and cis-acting factors (peptide mutation) on the formation of Au-phage hydrogels. These bioi...
Saved in:
Published in: | PloS one 2008-05, Vol.3 (5), p.e2242 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c728t-245729907e6e0fe89d7cbd57f0a54be5c2ab4a6346e01e22435c6775108f44fb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c728t-245729907e6e0fe89d7cbd57f0a54be5c2ab4a6346e01e22435c6775108f44fb3 |
container_end_page | |
container_issue | 5 |
container_start_page | e2242 |
container_title | PloS one |
container_volume | 3 |
creator | Souza, Glauco R Yonel-Gumruk, Esra Fan, Davin Easley, Jeffrey Rangel, Roberto Guzman-Rojas, Liliana Miller, J Houston Arap, Wadih Pasqualini, Renata |
description | Hydrogels have become a promising research focus because of their potential for biomedical application. Here we explore the long-range, electrostatic interactions by following the effect of trans-acting (pH) and cis-acting factors (peptide mutation) on the formation of Au-phage hydrogels. These bioinorganic hydrogels can be generated from the bottom-up assembly of Au nanoparticles (Au NP) with either native or mutant bacteriophage (phage) through electrostatic interaction of the phage pVIII major capsid proteins (pVIII). The cis-acting factor consists of a peptide extension displayed on the pVIII that mutates the phage. Our results show that pH can dictate the direct-assembly and stability of Au-phage hydrogels in spite of the differences between the native and the mutant pVIII. The first step in characterizing the interactions of Au NP with phage was to generate a molecular model that identified the charge distribution and structure of the native and mutant pVIII. This model indicated that the mutant peptide extension carried a higher positive charge relative to the native pVIII at all pHs. Next, by monitoring the Au-phage interaction by means of optical microscopy, elastic light scattering, fractal dimension analysis as well as Uv-vis and surface plasmon resonance spectroscopy, we show that the positive charge of the mutant peptide extension favors the opposite charge affinity between the phage and Au NP as the pH is decreased. These results show the versatility of this assembly method, where the stability of these hydrogels can be achieved by either adjusting the pH or by changing the composition of the phage pVIII without the need of phage display libraries. |
doi_str_mv | 10.1371/journal.pone.0002242 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1312287361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472650514</galeid><doaj_id>oai_doaj_org_article_5969b7401fda4188b92ea8f01e633c8e</doaj_id><sourcerecordid>A472650514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c728t-245729907e6e0fe89d7cbd57f0a54be5c2ab4a6346e01e22435c6775108f44fb3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLguBFx3y1Tb0QZhc_BhYW_LoNaXrSZmibbpLKzr83s1N15kKQXCQkz_sm5-RNkucYrTAt8dutnd0o-9VkR1ghhAhh5EFyjitKsoIg-vBofZY88X6LUE55UTxOzjBnFc05PU_CpQ3BDtk8pdJ7GOp-l1qddrvG2RZ6n2pnh7SWKoAzdupkC6kcm3Q9p6Mc7SRdMKoH_y4NHaSgNaiwN1DGZ_dgcHL0WdSbsU11nK3zT5NHWvYeni3zRfL944dvV5-z65tPm6v1daZKwkNGWF6SqkIlFIA08KopVd3kpUYyZzXkisiayYKyeIwh1k9zVZRljhHXjOmaXiQvD75Tb71YGuYFppgQXtICR2JzIBort2JyZpBuJ6w04n7DulYsFYq8Kqq6ZAjrRjLMeV0RkFzHmwtKFYfo9X65ba4HaBSMsfb-xPT0ZDSdaO1PQeKvEF5Fg1eLgbO3M_jwjyevDlQr46vMqG00U3E0MBgVw6BN3F-zkhQ5yjGLgjcngsgEuAutnL0Xm69f_p-9-XHKvj5iO5B96Lzt52Ds6E9BdgCVs9470H96gpHYZ_l3nWKfZbFkOcpeHPfzr2gJL_0FodjwKQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312287361</pqid></control><display><type>article</type><title>Bottom-up assembly of hydrogels from bacteriophage and Au nanoparticles: the effect of cis- and trans-acting factors</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Souza, Glauco R ; Yonel-Gumruk, Esra ; Fan, Davin ; Easley, Jeffrey ; Rangel, Roberto ; Guzman-Rojas, Liliana ; Miller, J Houston ; Arap, Wadih ; Pasqualini, Renata</creator><contributor>Lu, Jianren</contributor><creatorcontrib>Souza, Glauco R ; Yonel-Gumruk, Esra ; Fan, Davin ; Easley, Jeffrey ; Rangel, Roberto ; Guzman-Rojas, Liliana ; Miller, J Houston ; Arap, Wadih ; Pasqualini, Renata ; Lu, Jianren</creatorcontrib><description>Hydrogels have become a promising research focus because of their potential for biomedical application. Here we explore the long-range, electrostatic interactions by following the effect of trans-acting (pH) and cis-acting factors (peptide mutation) on the formation of Au-phage hydrogels. These bioinorganic hydrogels can be generated from the bottom-up assembly of Au nanoparticles (Au NP) with either native or mutant bacteriophage (phage) through electrostatic interaction of the phage pVIII major capsid proteins (pVIII). The cis-acting factor consists of a peptide extension displayed on the pVIII that mutates the phage. Our results show that pH can dictate the direct-assembly and stability of Au-phage hydrogels in spite of the differences between the native and the mutant pVIII. The first step in characterizing the interactions of Au NP with phage was to generate a molecular model that identified the charge distribution and structure of the native and mutant pVIII. This model indicated that the mutant peptide extension carried a higher positive charge relative to the native pVIII at all pHs. Next, by monitoring the Au-phage interaction by means of optical microscopy, elastic light scattering, fractal dimension analysis as well as Uv-vis and surface plasmon resonance spectroscopy, we show that the positive charge of the mutant peptide extension favors the opposite charge affinity between the phage and Au NP as the pH is decreased. These results show the versatility of this assembly method, where the stability of these hydrogels can be achieved by either adjusting the pH or by changing the composition of the phage pVIII without the need of phage display libraries.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0002242</identifier><identifier>PMID: 18493583</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acids ; Analysis ; Assembly ; Bacteriophages - chemistry ; Biochemistry/Biomacromolecule-Ligand Interactions ; Biology ; Biomedical engineering ; Biophysics/Biomacromolecule-Ligand Interactions ; Biopolymers ; Biotechnology ; Cancer ; Charge distribution ; Charge simulation ; Chemical engineering ; Chemistry ; Deoxyribonucleic acid ; DNA ; Elastic scattering ; Electrostatic properties ; Fractal analysis ; Genetic engineering ; Gold ; Gold - chemistry ; Hydrogels ; Hydrogen ions ; Hydrogen-Ion Concentration ; Libraries ; Light scattering ; Metal Nanoparticles ; Microscopy ; Mutation ; Nanoparticles ; Nanotechnology ; Oncology ; Optical microscopy ; Peptides ; pH effects ; Phage display ; Phages ; Proteins ; Resonance scattering ; Spectrophotometry, Ultraviolet ; Spectroscopy ; Stability ; Stem cells ; Surface chemistry ; Surface Plasmon Resonance ; Tissue engineering ; Viral proteins</subject><ispartof>PloS one, 2008-05, Vol.3 (5), p.e2242</ispartof><rights>COPYRIGHT 2008 Public Library of Science</rights><rights>2008 Souza et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Souza et al. 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c728t-245729907e6e0fe89d7cbd57f0a54be5c2ab4a6346e01e22435c6775108f44fb3</citedby><cites>FETCH-LOGICAL-c728t-245729907e6e0fe89d7cbd57f0a54be5c2ab4a6346e01e22435c6775108f44fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1312287361/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1312287361?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18493583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lu, Jianren</contributor><creatorcontrib>Souza, Glauco R</creatorcontrib><creatorcontrib>Yonel-Gumruk, Esra</creatorcontrib><creatorcontrib>Fan, Davin</creatorcontrib><creatorcontrib>Easley, Jeffrey</creatorcontrib><creatorcontrib>Rangel, Roberto</creatorcontrib><creatorcontrib>Guzman-Rojas, Liliana</creatorcontrib><creatorcontrib>Miller, J Houston</creatorcontrib><creatorcontrib>Arap, Wadih</creatorcontrib><creatorcontrib>Pasqualini, Renata</creatorcontrib><title>Bottom-up assembly of hydrogels from bacteriophage and Au nanoparticles: the effect of cis- and trans-acting factors</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Hydrogels have become a promising research focus because of their potential for biomedical application. Here we explore the long-range, electrostatic interactions by following the effect of trans-acting (pH) and cis-acting factors (peptide mutation) on the formation of Au-phage hydrogels. These bioinorganic hydrogels can be generated from the bottom-up assembly of Au nanoparticles (Au NP) with either native or mutant bacteriophage (phage) through electrostatic interaction of the phage pVIII major capsid proteins (pVIII). The cis-acting factor consists of a peptide extension displayed on the pVIII that mutates the phage. Our results show that pH can dictate the direct-assembly and stability of Au-phage hydrogels in spite of the differences between the native and the mutant pVIII. The first step in characterizing the interactions of Au NP with phage was to generate a molecular model that identified the charge distribution and structure of the native and mutant pVIII. This model indicated that the mutant peptide extension carried a higher positive charge relative to the native pVIII at all pHs. Next, by monitoring the Au-phage interaction by means of optical microscopy, elastic light scattering, fractal dimension analysis as well as Uv-vis and surface plasmon resonance spectroscopy, we show that the positive charge of the mutant peptide extension favors the opposite charge affinity between the phage and Au NP as the pH is decreased. These results show the versatility of this assembly method, where the stability of these hydrogels can be achieved by either adjusting the pH or by changing the composition of the phage pVIII without the need of phage display libraries.</description><subject>Amino acids</subject><subject>Analysis</subject><subject>Assembly</subject><subject>Bacteriophages - chemistry</subject><subject>Biochemistry/Biomacromolecule-Ligand Interactions</subject><subject>Biology</subject><subject>Biomedical engineering</subject><subject>Biophysics/Biomacromolecule-Ligand Interactions</subject><subject>Biopolymers</subject><subject>Biotechnology</subject><subject>Cancer</subject><subject>Charge distribution</subject><subject>Charge simulation</subject><subject>Chemical engineering</subject><subject>Chemistry</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Elastic scattering</subject><subject>Electrostatic properties</subject><subject>Fractal analysis</subject><subject>Genetic engineering</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Hydrogels</subject><subject>Hydrogen ions</subject><subject>Hydrogen-Ion Concentration</subject><subject>Libraries</subject><subject>Light scattering</subject><subject>Metal Nanoparticles</subject><subject>Microscopy</subject><subject>Mutation</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Oncology</subject><subject>Optical microscopy</subject><subject>Peptides</subject><subject>pH effects</subject><subject>Phage display</subject><subject>Phages</subject><subject>Proteins</subject><subject>Resonance scattering</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>Spectroscopy</subject><subject>Stability</subject><subject>Stem cells</subject><subject>Surface chemistry</subject><subject>Surface Plasmon Resonance</subject><subject>Tissue engineering</subject><subject>Viral proteins</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLguBFx3y1Tb0QZhc_BhYW_LoNaXrSZmibbpLKzr83s1N15kKQXCQkz_sm5-RNkucYrTAt8dutnd0o-9VkR1ghhAhh5EFyjitKsoIg-vBofZY88X6LUE55UTxOzjBnFc05PU_CpQ3BDtk8pdJ7GOp-l1qddrvG2RZ6n2pnh7SWKoAzdupkC6kcm3Q9p6Mc7SRdMKoH_y4NHaSgNaiwN1DGZ_dgcHL0WdSbsU11nK3zT5NHWvYeni3zRfL944dvV5-z65tPm6v1daZKwkNGWF6SqkIlFIA08KopVd3kpUYyZzXkisiayYKyeIwh1k9zVZRljhHXjOmaXiQvD75Tb71YGuYFppgQXtICR2JzIBort2JyZpBuJ6w04n7DulYsFYq8Kqq6ZAjrRjLMeV0RkFzHmwtKFYfo9X65ba4HaBSMsfb-xPT0ZDSdaO1PQeKvEF5Fg1eLgbO3M_jwjyevDlQr46vMqG00U3E0MBgVw6BN3F-zkhQ5yjGLgjcngsgEuAutnL0Xm69f_p-9-XHKvj5iO5B96Lzt52Ds6E9BdgCVs9470H96gpHYZ_l3nWKfZbFkOcpeHPfzr2gJL_0FodjwKQ</recordid><startdate>20080521</startdate><enddate>20080521</enddate><creator>Souza, Glauco R</creator><creator>Yonel-Gumruk, Esra</creator><creator>Fan, Davin</creator><creator>Easley, Jeffrey</creator><creator>Rangel, Roberto</creator><creator>Guzman-Rojas, Liliana</creator><creator>Miller, J Houston</creator><creator>Arap, Wadih</creator><creator>Pasqualini, Renata</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20080521</creationdate><title>Bottom-up assembly of hydrogels from bacteriophage and Au nanoparticles: the effect of cis- and trans-acting factors</title><author>Souza, Glauco R ; Yonel-Gumruk, Esra ; Fan, Davin ; Easley, Jeffrey ; Rangel, Roberto ; Guzman-Rojas, Liliana ; Miller, J Houston ; Arap, Wadih ; Pasqualini, Renata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c728t-245729907e6e0fe89d7cbd57f0a54be5c2ab4a6346e01e22435c6775108f44fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Amino acids</topic><topic>Analysis</topic><topic>Assembly</topic><topic>Bacteriophages - chemistry</topic><topic>Biochemistry/Biomacromolecule-Ligand Interactions</topic><topic>Biology</topic><topic>Biomedical engineering</topic><topic>Biophysics/Biomacromolecule-Ligand Interactions</topic><topic>Biopolymers</topic><topic>Biotechnology</topic><topic>Cancer</topic><topic>Charge distribution</topic><topic>Charge simulation</topic><topic>Chemical engineering</topic><topic>Chemistry</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Elastic scattering</topic><topic>Electrostatic properties</topic><topic>Fractal analysis</topic><topic>Genetic engineering</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Hydrogels</topic><topic>Hydrogen ions</topic><topic>Hydrogen-Ion Concentration</topic><topic>Libraries</topic><topic>Light scattering</topic><topic>Metal Nanoparticles</topic><topic>Microscopy</topic><topic>Mutation</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Oncology</topic><topic>Optical microscopy</topic><topic>Peptides</topic><topic>pH effects</topic><topic>Phage display</topic><topic>Phages</topic><topic>Proteins</topic><topic>Resonance scattering</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>Spectroscopy</topic><topic>Stability</topic><topic>Stem cells</topic><topic>Surface chemistry</topic><topic>Surface Plasmon Resonance</topic><topic>Tissue engineering</topic><topic>Viral proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Souza, Glauco R</creatorcontrib><creatorcontrib>Yonel-Gumruk, Esra</creatorcontrib><creatorcontrib>Fan, Davin</creatorcontrib><creatorcontrib>Easley, Jeffrey</creatorcontrib><creatorcontrib>Rangel, Roberto</creatorcontrib><creatorcontrib>Guzman-Rojas, Liliana</creatorcontrib><creatorcontrib>Miller, J Houston</creatorcontrib><creatorcontrib>Arap, Wadih</creatorcontrib><creatorcontrib>Pasqualini, Renata</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Souza, Glauco R</au><au>Yonel-Gumruk, Esra</au><au>Fan, Davin</au><au>Easley, Jeffrey</au><au>Rangel, Roberto</au><au>Guzman-Rojas, Liliana</au><au>Miller, J Houston</au><au>Arap, Wadih</au><au>Pasqualini, Renata</au><au>Lu, Jianren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bottom-up assembly of hydrogels from bacteriophage and Au nanoparticles: the effect of cis- and trans-acting factors</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2008-05-21</date><risdate>2008</risdate><volume>3</volume><issue>5</issue><spage>e2242</spage><pages>e2242-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Hydrogels have become a promising research focus because of their potential for biomedical application. Here we explore the long-range, electrostatic interactions by following the effect of trans-acting (pH) and cis-acting factors (peptide mutation) on the formation of Au-phage hydrogels. These bioinorganic hydrogels can be generated from the bottom-up assembly of Au nanoparticles (Au NP) with either native or mutant bacteriophage (phage) through electrostatic interaction of the phage pVIII major capsid proteins (pVIII). The cis-acting factor consists of a peptide extension displayed on the pVIII that mutates the phage. Our results show that pH can dictate the direct-assembly and stability of Au-phage hydrogels in spite of the differences between the native and the mutant pVIII. The first step in characterizing the interactions of Au NP with phage was to generate a molecular model that identified the charge distribution and structure of the native and mutant pVIII. This model indicated that the mutant peptide extension carried a higher positive charge relative to the native pVIII at all pHs. Next, by monitoring the Au-phage interaction by means of optical microscopy, elastic light scattering, fractal dimension analysis as well as Uv-vis and surface plasmon resonance spectroscopy, we show that the positive charge of the mutant peptide extension favors the opposite charge affinity between the phage and Au NP as the pH is decreased. These results show the versatility of this assembly method, where the stability of these hydrogels can be achieved by either adjusting the pH or by changing the composition of the phage pVIII without the need of phage display libraries.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>18493583</pmid><doi>10.1371/journal.pone.0002242</doi><tpages>e2242</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2008-05, Vol.3 (5), p.e2242 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1312287361 |
source | PubMed Central Free; Publicly Available Content Database |
subjects | Amino acids Analysis Assembly Bacteriophages - chemistry Biochemistry/Biomacromolecule-Ligand Interactions Biology Biomedical engineering Biophysics/Biomacromolecule-Ligand Interactions Biopolymers Biotechnology Cancer Charge distribution Charge simulation Chemical engineering Chemistry Deoxyribonucleic acid DNA Elastic scattering Electrostatic properties Fractal analysis Genetic engineering Gold Gold - chemistry Hydrogels Hydrogen ions Hydrogen-Ion Concentration Libraries Light scattering Metal Nanoparticles Microscopy Mutation Nanoparticles Nanotechnology Oncology Optical microscopy Peptides pH effects Phage display Phages Proteins Resonance scattering Spectrophotometry, Ultraviolet Spectroscopy Stability Stem cells Surface chemistry Surface Plasmon Resonance Tissue engineering Viral proteins |
title | Bottom-up assembly of hydrogels from bacteriophage and Au nanoparticles: the effect of cis- and trans-acting factors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A03%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bottom-up%20assembly%20of%20hydrogels%20from%20bacteriophage%20and%20Au%20nanoparticles:%20the%20effect%20of%20cis-%20and%20trans-acting%20factors&rft.jtitle=PloS%20one&rft.au=Souza,%20Glauco%20R&rft.date=2008-05-21&rft.volume=3&rft.issue=5&rft.spage=e2242&rft.pages=e2242-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0002242&rft_dat=%3Cgale_plos_%3EA472650514%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c728t-245729907e6e0fe89d7cbd57f0a54be5c2ab4a6346e01e22435c6775108f44fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1312287361&rft_id=info:pmid/18493583&rft_galeid=A472650514&rfr_iscdi=true |