Loading…
Cholinergic neuromodulation changes phase response curve shape and type in cortical pyramidal neurons
Spike generation in cortical neurons depends on the interplay between diverse intrinsic conductances. The phase response curve (PRC) is a measure of the spike time shift caused by perturbations of the membrane potential as a function of the phase of the spike cycle of a neuron. Near the rheobase, pu...
Saved in:
Published in: | PloS one 2008-12, Vol.3 (12), p.e3947-e3947 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spike generation in cortical neurons depends on the interplay between diverse intrinsic conductances. The phase response curve (PRC) is a measure of the spike time shift caused by perturbations of the membrane potential as a function of the phase of the spike cycle of a neuron. Near the rheobase, purely positive (type I) phase-response curves are associated with an onset of repetitive firing through a saddle-node bifurcation, whereas biphasic (type II) phase-response curves point towards a transition based on a Hopf-Andronov bifurcation. In recordings from layer 2/3 pyramidal neurons in cortical slices, cholinergic action, consistent with down-regulation of slow voltage-dependent potassium currents such as the M-current, switched the PRC from type II to type I. This is the first report showing that cholinergic neuromodulation may cause a qualitative switch in the PRCs type implying a change in the fundamental dynamical mechanism of spike generation. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0003947 |