Loading…

A dynamic neural field model of mesoscopic cortical activity captured with voltage-sensitive dye imaging

A neural field model is presented that captures the essential non-linear characteristics of activity dynamics across several millimeters of visual cortex in response to local flashed and moving stimuli. We account for physiological data obtained by voltage-sensitive dye (VSD) imaging which reports m...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2010-09, Vol.6 (9), p.e1000919
Main Authors: Markounikau, Valentin, Igel, Christian, Grinvald, Amiram, Jancke, Dirk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c665t-cd2b6e58946def3eb6e88529830ebf1aaa268a7f5accc2bcc37ae68bb6d99caa3
cites cdi_FETCH-LOGICAL-c665t-cd2b6e58946def3eb6e88529830ebf1aaa268a7f5accc2bcc37ae68bb6d99caa3
container_end_page
container_issue 9
container_start_page e1000919
container_title PLoS computational biology
container_volume 6
creator Markounikau, Valentin
Igel, Christian
Grinvald, Amiram
Jancke, Dirk
description A neural field model is presented that captures the essential non-linear characteristics of activity dynamics across several millimeters of visual cortex in response to local flashed and moving stimuli. We account for physiological data obtained by voltage-sensitive dye (VSD) imaging which reports mesoscopic population activity at high spatio-temporal resolution. Stimulation included a single flashed square, a single flashed bar, the line-motion paradigm--for which psychophysical studies showed that flashing a square briefly before a bar produces sensation of illusory motion within the bar--and moving squares controls. We consider a two-layer neural field (NF) model describing an excitatory and an inhibitory layer of neurons as a coupled system of non-linear integro-differential equations. Under the assumption that the aggregated activity of both layers is reflected by VSD imaging, our phenomenological model quantitatively accounts for the observed spatio-temporal activity patterns. Moreover, the model generalizes to novel similar stimuli as it matches activity evoked by moving squares of different speeds. Our results indicate that feedback from higher brain areas is not required to produce motion patterns in the case of the illusory line-motion paradigm. Physiological interpretation of the model suggests that a considerable fraction of the VSD signal may be due to inhibitory activity, supporting the notion that balanced intra-layer cortical interactions between inhibitory and excitatory populations play a major role in shaping dynamic stimulus representations in the early visual cortex.
doi_str_mv 10.1371/journal.pcbi.1000919
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313172423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A238912206</galeid><doaj_id>oai_doaj_org_article_93f5634baae04bbca04400f487b84f67</doaj_id><sourcerecordid>A238912206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c665t-cd2b6e58946def3eb6e88529830ebf1aaa268a7f5accc2bcc37ae68bb6d99caa3</originalsourceid><addsrcrecordid>eNqVktuO0zAQhiMEYpeFN0AQiQvgosXnODdI1YpDpRVIHK6tiTNOXSVxN04KfXvcbXe1lRAS8oVP3_wzHv9Z9pySOeUFfbcO09BDO9_Yys8pIaSk5YPsnErJZwWX-uG99Vn2JMY1IWlZqsfZGSOaa1no82y1yOtdD523eY_TAG3uPLZ13oUa2zy4vMMYog2bBNgwjN4mBOzot37c5RY24zRgnf_y4yrfhnaEBmcR--gTgUkac99B4_vmafbIQRvx2XG-yH5-_PDj8vPs6uun5eXiamaVkuPM1qxSmMoUqkbHMW20lqzUnGDlKAAwpaFwEqy1rLKWF4BKV5Wqy9IC8Ivs5UF304Zojk2KhvI0CiYYT8TyQNQB1mYzpAKHnQngzc1BGBoD-4e2aErupOKiAkAiqsoCEYIQJ3RRaeFUkbTeH7NNVYe1xX5MPTwRPb3p_co0YWtYyZWk-2JeHwWGcD1hHE3no8W2hR7DFE0hJVWEU5HIN_8kqS6YFpITldBXB7SB9Ajfu5By2z1uFozrkjJ2Q83_QqVRY7JD6NH5dH4S8PYkIDEj_h4bmGI0y-_f_oP9csqKA2uHEOOA7q5_lJi912-_0ey9bo5eT2Ev7vf-LujW3PwPyrT83A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1872845306</pqid></control><display><type>article</type><title>A dynamic neural field model of mesoscopic cortical activity captured with voltage-sensitive dye imaging</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><creator>Markounikau, Valentin ; Igel, Christian ; Grinvald, Amiram ; Jancke, Dirk</creator><contributor>Sporns, Olaf</contributor><creatorcontrib>Markounikau, Valentin ; Igel, Christian ; Grinvald, Amiram ; Jancke, Dirk ; Sporns, Olaf</creatorcontrib><description>A neural field model is presented that captures the essential non-linear characteristics of activity dynamics across several millimeters of visual cortex in response to local flashed and moving stimuli. We account for physiological data obtained by voltage-sensitive dye (VSD) imaging which reports mesoscopic population activity at high spatio-temporal resolution. Stimulation included a single flashed square, a single flashed bar, the line-motion paradigm--for which psychophysical studies showed that flashing a square briefly before a bar produces sensation of illusory motion within the bar--and moving squares controls. We consider a two-layer neural field (NF) model describing an excitatory and an inhibitory layer of neurons as a coupled system of non-linear integro-differential equations. Under the assumption that the aggregated activity of both layers is reflected by VSD imaging, our phenomenological model quantitatively accounts for the observed spatio-temporal activity patterns. Moreover, the model generalizes to novel similar stimuli as it matches activity evoked by moving squares of different speeds. Our results indicate that feedback from higher brain areas is not required to produce motion patterns in the case of the illusory line-motion paradigm. Physiological interpretation of the model suggests that a considerable fraction of the VSD signal may be due to inhibitory activity, supporting the notion that balanced intra-layer cortical interactions between inhibitory and excitatory populations play a major role in shaping dynamic stimulus representations in the early visual cortex.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1000919</identifier><identifier>PMID: 20838578</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Brain ; Cats ; Computational Biology - methods ; Computational Biology/Computational Neuroscience ; Evoked Potentials, Visual - physiology ; Experiments ; Feedback ; Feedback, Physiological ; Genetic aspects ; Models, Neurological ; Neuroscience/Cognitive Neuroscience ; Nonlinear Dynamics ; Physiological aspects ; Population ; Visual cortex ; Visual Cortex - physiology ; Voltage-gated potassium channels ; Voltage-Sensitive Dye Imaging - methods</subject><ispartof>PLoS computational biology, 2010-09, Vol.6 (9), p.e1000919</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>Markounikau et al. 2010</rights><rights>2010 Markounikau et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Markounikau V, Igel C, Grinvald A, Jancke D (2010) A Dynamic Neural Field Model of Mesoscopic Cortical Activity Captured with Voltage-Sensitive Dye Imaging. PLoS Comput Biol 6(9): e1000919. doi:10.1371/journal.pcbi.1000919</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c665t-cd2b6e58946def3eb6e88529830ebf1aaa268a7f5accc2bcc37ae68bb6d99caa3</citedby><cites>FETCH-LOGICAL-c665t-cd2b6e58946def3eb6e88529830ebf1aaa268a7f5accc2bcc37ae68bb6d99caa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2936513/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2936513/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20838578$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sporns, Olaf</contributor><creatorcontrib>Markounikau, Valentin</creatorcontrib><creatorcontrib>Igel, Christian</creatorcontrib><creatorcontrib>Grinvald, Amiram</creatorcontrib><creatorcontrib>Jancke, Dirk</creatorcontrib><title>A dynamic neural field model of mesoscopic cortical activity captured with voltage-sensitive dye imaging</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>A neural field model is presented that captures the essential non-linear characteristics of activity dynamics across several millimeters of visual cortex in response to local flashed and moving stimuli. We account for physiological data obtained by voltage-sensitive dye (VSD) imaging which reports mesoscopic population activity at high spatio-temporal resolution. Stimulation included a single flashed square, a single flashed bar, the line-motion paradigm--for which psychophysical studies showed that flashing a square briefly before a bar produces sensation of illusory motion within the bar--and moving squares controls. We consider a two-layer neural field (NF) model describing an excitatory and an inhibitory layer of neurons as a coupled system of non-linear integro-differential equations. Under the assumption that the aggregated activity of both layers is reflected by VSD imaging, our phenomenological model quantitatively accounts for the observed spatio-temporal activity patterns. Moreover, the model generalizes to novel similar stimuli as it matches activity evoked by moving squares of different speeds. Our results indicate that feedback from higher brain areas is not required to produce motion patterns in the case of the illusory line-motion paradigm. Physiological interpretation of the model suggests that a considerable fraction of the VSD signal may be due to inhibitory activity, supporting the notion that balanced intra-layer cortical interactions between inhibitory and excitatory populations play a major role in shaping dynamic stimulus representations in the early visual cortex.</description><subject>Animals</subject><subject>Brain</subject><subject>Cats</subject><subject>Computational Biology - methods</subject><subject>Computational Biology/Computational Neuroscience</subject><subject>Evoked Potentials, Visual - physiology</subject><subject>Experiments</subject><subject>Feedback</subject><subject>Feedback, Physiological</subject><subject>Genetic aspects</subject><subject>Models, Neurological</subject><subject>Neuroscience/Cognitive Neuroscience</subject><subject>Nonlinear Dynamics</subject><subject>Physiological aspects</subject><subject>Population</subject><subject>Visual cortex</subject><subject>Visual Cortex - physiology</subject><subject>Voltage-gated potassium channels</subject><subject>Voltage-Sensitive Dye Imaging - methods</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVktuO0zAQhiMEYpeFN0AQiQvgosXnODdI1YpDpRVIHK6tiTNOXSVxN04KfXvcbXe1lRAS8oVP3_wzHv9Z9pySOeUFfbcO09BDO9_Yys8pIaSk5YPsnErJZwWX-uG99Vn2JMY1IWlZqsfZGSOaa1no82y1yOtdD523eY_TAG3uPLZ13oUa2zy4vMMYog2bBNgwjN4mBOzot37c5RY24zRgnf_y4yrfhnaEBmcR--gTgUkac99B4_vmafbIQRvx2XG-yH5-_PDj8vPs6uun5eXiamaVkuPM1qxSmMoUqkbHMW20lqzUnGDlKAAwpaFwEqy1rLKWF4BKV5Wqy9IC8Ivs5UF304Zojk2KhvI0CiYYT8TyQNQB1mYzpAKHnQngzc1BGBoD-4e2aErupOKiAkAiqsoCEYIQJ3RRaeFUkbTeH7NNVYe1xX5MPTwRPb3p_co0YWtYyZWk-2JeHwWGcD1hHE3no8W2hR7DFE0hJVWEU5HIN_8kqS6YFpITldBXB7SB9Ajfu5By2z1uFozrkjJ2Q83_QqVRY7JD6NH5dH4S8PYkIDEj_h4bmGI0y-_f_oP9csqKA2uHEOOA7q5_lJi912-_0ey9bo5eT2Ev7vf-LujW3PwPyrT83A</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Markounikau, Valentin</creator><creator>Igel, Christian</creator><creator>Grinvald, Amiram</creator><creator>Jancke, Dirk</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100901</creationdate><title>A dynamic neural field model of mesoscopic cortical activity captured with voltage-sensitive dye imaging</title><author>Markounikau, Valentin ; Igel, Christian ; Grinvald, Amiram ; Jancke, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c665t-cd2b6e58946def3eb6e88529830ebf1aaa268a7f5accc2bcc37ae68bb6d99caa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Brain</topic><topic>Cats</topic><topic>Computational Biology - methods</topic><topic>Computational Biology/Computational Neuroscience</topic><topic>Evoked Potentials, Visual - physiology</topic><topic>Experiments</topic><topic>Feedback</topic><topic>Feedback, Physiological</topic><topic>Genetic aspects</topic><topic>Models, Neurological</topic><topic>Neuroscience/Cognitive Neuroscience</topic><topic>Nonlinear Dynamics</topic><topic>Physiological aspects</topic><topic>Population</topic><topic>Visual cortex</topic><topic>Visual Cortex - physiology</topic><topic>Voltage-gated potassium channels</topic><topic>Voltage-Sensitive Dye Imaging - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Markounikau, Valentin</creatorcontrib><creatorcontrib>Igel, Christian</creatorcontrib><creatorcontrib>Grinvald, Amiram</creatorcontrib><creatorcontrib>Jancke, Dirk</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Markounikau, Valentin</au><au>Igel, Christian</au><au>Grinvald, Amiram</au><au>Jancke, Dirk</au><au>Sporns, Olaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dynamic neural field model of mesoscopic cortical activity captured with voltage-sensitive dye imaging</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>6</volume><issue>9</issue><spage>e1000919</spage><pages>e1000919-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>A neural field model is presented that captures the essential non-linear characteristics of activity dynamics across several millimeters of visual cortex in response to local flashed and moving stimuli. We account for physiological data obtained by voltage-sensitive dye (VSD) imaging which reports mesoscopic population activity at high spatio-temporal resolution. Stimulation included a single flashed square, a single flashed bar, the line-motion paradigm--for which psychophysical studies showed that flashing a square briefly before a bar produces sensation of illusory motion within the bar--and moving squares controls. We consider a two-layer neural field (NF) model describing an excitatory and an inhibitory layer of neurons as a coupled system of non-linear integro-differential equations. Under the assumption that the aggregated activity of both layers is reflected by VSD imaging, our phenomenological model quantitatively accounts for the observed spatio-temporal activity patterns. Moreover, the model generalizes to novel similar stimuli as it matches activity evoked by moving squares of different speeds. Our results indicate that feedback from higher brain areas is not required to produce motion patterns in the case of the illusory line-motion paradigm. Physiological interpretation of the model suggests that a considerable fraction of the VSD signal may be due to inhibitory activity, supporting the notion that balanced intra-layer cortical interactions between inhibitory and excitatory populations play a major role in shaping dynamic stimulus representations in the early visual cortex.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20838578</pmid><doi>10.1371/journal.pcbi.1000919</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2010-09, Vol.6 (9), p.e1000919
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1313172423
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free
subjects Animals
Brain
Cats
Computational Biology - methods
Computational Biology/Computational Neuroscience
Evoked Potentials, Visual - physiology
Experiments
Feedback
Feedback, Physiological
Genetic aspects
Models, Neurological
Neuroscience/Cognitive Neuroscience
Nonlinear Dynamics
Physiological aspects
Population
Visual cortex
Visual Cortex - physiology
Voltage-gated potassium channels
Voltage-Sensitive Dye Imaging - methods
title A dynamic neural field model of mesoscopic cortical activity captured with voltage-sensitive dye imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dynamic%20neural%20field%20model%20of%20mesoscopic%20cortical%20activity%20captured%20with%20voltage-sensitive%20dye%20imaging&rft.jtitle=PLoS%20computational%20biology&rft.au=Markounikau,%20Valentin&rft.date=2010-09-01&rft.volume=6&rft.issue=9&rft.spage=e1000919&rft.pages=e1000919-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1000919&rft_dat=%3Cgale_plos_%3EA238912206%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c665t-cd2b6e58946def3eb6e88529830ebf1aaa268a7f5accc2bcc37ae68bb6d99caa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1872845306&rft_id=info:pmid/20838578&rft_galeid=A238912206&rfr_iscdi=true