Loading…

Modeling and dynamics of the inward-facing state of a Na+/Cl- dependent neurotransmitter transporter homologue

The leucine transporter (LeuT) has recently commanded exceptional attention due mainly to two distinctions; it provides the only crystal structures available for a protein homologous to the pharmacologically relevant neurotransmitter: sodium symporters (NSS), and, it exhibits a hallmark 5-TM inverte...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2010-08, Vol.6 (8), p.e1000905
Main Authors: Shaikh, Saher Afshan, Tajkhorshid, Emad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The leucine transporter (LeuT) has recently commanded exceptional attention due mainly to two distinctions; it provides the only crystal structures available for a protein homologous to the pharmacologically relevant neurotransmitter: sodium symporters (NSS), and, it exhibits a hallmark 5-TM inverted repeat ("LeuT-fold"), a fold recently discovered to also exist in several secondary transporter families, underscoring its general role in transporter function. Constructing the transport cycle of "LeuT-fold" transporters requires detailed structural and dynamic descriptions of the outward-facing (OF) and inward-facing (IF) states, as well as the intermediate states. To this end, we have modeled the structurally unknown IF state of LeuT, based on the known crystal structures of the OF state of LeuT and the IF state of vSGLT, a "LeuT-fold" transporter. The detailed methodology developed for the study combines structure-based alignment, threading, targeted MD and equilibrium MD, and can be applied to other proteins. The resulting IF-state models maintain the secondary structural features of LeuT. Water penetration and solvent accessibility calculations show that TM1, TM3, TM6 and TM8 line the substrate binding/unbinding pathway with TM10 and its pseudosymmetric partner, TM5, participating in the extracellular and intracellular halves of the lumen, respectively. We report conformational hotspots where notable changes in interactions occur between the IF and OF states. We observe Na2 exiting the LeuT-substrate- complex in the IF state, mainly due to TM1 bending. Inducing a transition in only one of the two pseudosymmetric domains, while allowing the second to respond dynamically, is found to be sufficient to induce the formation of the IF state. We also propose that TM2 and TM7 may be facilitators of TM1 and TM6 motion. Thus, this study not only presents a novel modeling methodology applied to obtain the IF state of LeuT, but also describes structural elements involved in a possibly general transport mechanism in transporters adopting the "LeuT-fold".
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1000905