Loading…

Differentially expressed RNA from public microarray data identifies serum protein biomarkers for cross-organ transplant rejection and other conditions

Serum proteins are routinely used to diagnose diseases, but are hard to find due to low sensitivity in screening the serum proteome. Public repositories of microarray data, such as the Gene Expression Omnibus (GEO), contain RNA expression profiles for more than 16,000 biological conditions, covering...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2010-09, Vol.6 (9), p.e1000940
Main Authors: Chen, Rong, Sigdel, Tara K, Li, Li, Kambham, Neeraja, Dudley, Joel T, Hsieh, Szu-Chuan, Klassen, R Bryan, Chen, Amery, Caohuu, Tuyen, Morgan, Alexander A, Valantine, Hannah A, Khush, Kiran K, Sarwal, Minnie M, Butte, Atul J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c781t-7f5fad2c2e4f604873e1d31acd05ce5a541d318f1c0c88bf5aa1a3a5a8a468213
cites cdi_FETCH-LOGICAL-c781t-7f5fad2c2e4f604873e1d31acd05ce5a541d318f1c0c88bf5aa1a3a5a8a468213
container_end_page
container_issue 9
container_start_page e1000940
container_title PLoS computational biology
container_volume 6
creator Chen, Rong
Sigdel, Tara K
Li, Li
Kambham, Neeraja
Dudley, Joel T
Hsieh, Szu-Chuan
Klassen, R Bryan
Chen, Amery
Caohuu, Tuyen
Morgan, Alexander A
Valantine, Hannah A
Khush, Kiran K
Sarwal, Minnie M
Butte, Atul J
description Serum proteins are routinely used to diagnose diseases, but are hard to find due to low sensitivity in screening the serum proteome. Public repositories of microarray data, such as the Gene Expression Omnibus (GEO), contain RNA expression profiles for more than 16,000 biological conditions, covering more than 30% of United States mortality. We hypothesized that genes coding for serum- and urine-detectable proteins, and showing differential expression of RNA in disease-damaged tissues would make ideal diagnostic protein biomarkers for those diseases. We showed that predicted protein biomarkers are significantly enriched for known diagnostic protein biomarkers in 22 diseases, with enrichment significantly higher in diseases for which at least three datasets are available. We then used this strategy to search for new biomarkers indicating acute rejection (AR) across different types of transplanted solid organs. We integrated three biopsy-based microarray studies of AR from pediatric renal, adult renal and adult cardiac transplantation and identified 45 genes upregulated in all three. From this set, we chose 10 proteins for serum ELISA assays in 39 renal transplant patients, and discovered three that were significantly higher in AR. Interestingly, all three proteins were also significantly higher during AR in the 63 cardiac transplant recipients studied. Our best marker, serum PECAM1, identified renal AR with 89% sensitivity and 75% specificity, and also showed increased expression in AR by immunohistochemistry in renal, hepatic and cardiac transplant biopsies. Our results demonstrate that integrating gene expression microarray measurements from disease samples and even publicly-available data sets can be a powerful, fast, and cost-effective strategy for the discovery of new diagnostic serum protein biomarkers.
doi_str_mv 10.1371/journal.pcbi.1000940
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313173157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A238912227</galeid><doaj_id>oai_doaj_org_article_c16fd1e3c503408e8ee6fe32abfe142e</doaj_id><sourcerecordid>A238912227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c781t-7f5fad2c2e4f604873e1d31acd05ce5a541d318f1c0c88bf5aa1a3a5a8a468213</originalsourceid><addsrcrecordid>eNqVk91u1DAQhSMEoqXwBggscYG42MU_ceLcIK3KX6WqSAWurYkz3nrJxovtoO6L8Lw43W3VlZAQ8kWcyXeONSeeonjO6JyJmr1d-TEM0M83pnVzRiltSvqgOGZSilktpHp4b39UPIlxRWneNtXj4ohTpWSt6HHx-72zFgMOyUHfbwlebwLGiB25vFgQG_yabMa2d4asnQkeQoAt6SABcd0ksg4jiRjGzAWf0A2kdX4N4QeGSKwPJKtinPmwhIGkAEPc9DAkEnCFJjk_EBg64tMVZtQPnZtq8WnxyEIf8dn-eVJ8__jh2-nn2fmXT2eni_OZqRVLs9pKCx03HEtb0VLVAlknGJiOSoMSZDm9KssMNUq1VgIwECBBQVkpzsRJ8XLnu-l91PtIo2Yir1owWWfibEd0HlZ6E1zubas9OH1TyH1pCMmZHrVhle0YCiOpKKlChVhZFBxai6zkmL3e7U8b2zV2JgcYoD8wPfwyuCu99L80b8qyVjwbvN4bBP9zxJj02kWDfU4U_Ri1Ek3ViLop_0nWsqoqrliVyVc7cgm5BzdYn482E60XXKiGcc6nGOZ_ofLqMF8MP6B1uX4geHMgyEzC67SEMUZ99vXyP9iLQ7bcsTf3KqC9i49RPQ3G7V_U02Do_WBk2Yv70d-JbidB_AHEzg5X</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>756662816</pqid></control><display><type>article</type><title>Differentially expressed RNA from public microarray data identifies serum protein biomarkers for cross-organ transplant rejection and other conditions</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Chen, Rong ; Sigdel, Tara K ; Li, Li ; Kambham, Neeraja ; Dudley, Joel T ; Hsieh, Szu-Chuan ; Klassen, R Bryan ; Chen, Amery ; Caohuu, Tuyen ; Morgan, Alexander A ; Valantine, Hannah A ; Khush, Kiran K ; Sarwal, Minnie M ; Butte, Atul J</creator><contributor>Weiss, Scott T.</contributor><creatorcontrib>Chen, Rong ; Sigdel, Tara K ; Li, Li ; Kambham, Neeraja ; Dudley, Joel T ; Hsieh, Szu-Chuan ; Klassen, R Bryan ; Chen, Amery ; Caohuu, Tuyen ; Morgan, Alexander A ; Valantine, Hannah A ; Khush, Kiran K ; Sarwal, Minnie M ; Butte, Atul J ; Weiss, Scott T.</creatorcontrib><description>Serum proteins are routinely used to diagnose diseases, but are hard to find due to low sensitivity in screening the serum proteome. Public repositories of microarray data, such as the Gene Expression Omnibus (GEO), contain RNA expression profiles for more than 16,000 biological conditions, covering more than 30% of United States mortality. We hypothesized that genes coding for serum- and urine-detectable proteins, and showing differential expression of RNA in disease-damaged tissues would make ideal diagnostic protein biomarkers for those diseases. We showed that predicted protein biomarkers are significantly enriched for known diagnostic protein biomarkers in 22 diseases, with enrichment significantly higher in diseases for which at least three datasets are available. We then used this strategy to search for new biomarkers indicating acute rejection (AR) across different types of transplanted solid organs. We integrated three biopsy-based microarray studies of AR from pediatric renal, adult renal and adult cardiac transplantation and identified 45 genes upregulated in all three. From this set, we chose 10 proteins for serum ELISA assays in 39 renal transplant patients, and discovered three that were significantly higher in AR. Interestingly, all three proteins were also significantly higher during AR in the 63 cardiac transplant recipients studied. Our best marker, serum PECAM1, identified renal AR with 89% sensitivity and 75% specificity, and also showed increased expression in AR by immunohistochemistry in renal, hepatic and cardiac transplant biopsies. Our results demonstrate that integrating gene expression microarray measurements from disease samples and even publicly-available data sets can be a powerful, fast, and cost-effective strategy for the discovery of new diagnostic serum protein biomarkers.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1000940</identifier><identifier>PMID: 20885780</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biological markers ; Biomarkers ; Biomarkers - blood ; Biomarkers - metabolism ; Biomarkers - urine ; Biopsy ; Blood proteins ; Blood Proteins - analysis ; Blood Proteins - genetics ; Cardiovascular Disorders/Cardiac Surgery and Transplantations ; Computational Biology - methods ; Data Mining ; Databases, Genetic ; Demographics ; Disease ; DNA microarrays ; Enzyme-Linked Immunosorbent Assay ; Gene expression ; Gene Expression Profiling ; Genetic aspects ; Genetics and Genomics/Bioinformatics ; Genetics and Genomics/Gene Expression ; Graft rejection ; Graft Rejection - blood ; Graft Rejection - diagnosis ; Graft Rejection - metabolism ; Graft Rejection - urine ; Health aspects ; Heart Transplantation - adverse effects ; Heart Transplantation - immunology ; Histocytochemistry ; Humans ; Identification and classification ; Kidney Glomerulus - metabolism ; Kidney Glomerulus - pathology ; Kidney Transplantation - adverse effects ; Kidney Transplantation - immunology ; Mortality ; Nephrology/Dialysis and Renal Transplantation ; Oligonucleotide Array Sequence Analysis - methods ; Ovarian cancer ; Pediatrics ; Proteins ; Proteinuria - blood ; Proteinuria - urine ; Reproducibility of Results ; RNA ; RNA - analysis ; RNA - biosynthesis ; RNA - genetics ; ROC Curve ; Transplants &amp; implants</subject><ispartof>PLoS computational biology, 2010-09, Vol.6 (9), p.e1000940</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>Chen et al. 2010</rights><rights>2010 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Chen R, Sigdel TK, Li L, Kambham N, Dudley JT, et al. (2010) Differentially Expressed RNA from Public Microarray Data Identifies Serum Protein Biomarkers for Cross-Organ Transplant Rejection and Other Conditions. PLoS Comput Biol 6(9): e1000940. doi:10.1371/journal.pcbi.1000940</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c781t-7f5fad2c2e4f604873e1d31acd05ce5a541d318f1c0c88bf5aa1a3a5a8a468213</citedby><cites>FETCH-LOGICAL-c781t-7f5fad2c2e4f604873e1d31acd05ce5a541d318f1c0c88bf5aa1a3a5a8a468213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944782/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944782/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20885780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Weiss, Scott T.</contributor><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Sigdel, Tara K</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Kambham, Neeraja</creatorcontrib><creatorcontrib>Dudley, Joel T</creatorcontrib><creatorcontrib>Hsieh, Szu-Chuan</creatorcontrib><creatorcontrib>Klassen, R Bryan</creatorcontrib><creatorcontrib>Chen, Amery</creatorcontrib><creatorcontrib>Caohuu, Tuyen</creatorcontrib><creatorcontrib>Morgan, Alexander A</creatorcontrib><creatorcontrib>Valantine, Hannah A</creatorcontrib><creatorcontrib>Khush, Kiran K</creatorcontrib><creatorcontrib>Sarwal, Minnie M</creatorcontrib><creatorcontrib>Butte, Atul J</creatorcontrib><title>Differentially expressed RNA from public microarray data identifies serum protein biomarkers for cross-organ transplant rejection and other conditions</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Serum proteins are routinely used to diagnose diseases, but are hard to find due to low sensitivity in screening the serum proteome. Public repositories of microarray data, such as the Gene Expression Omnibus (GEO), contain RNA expression profiles for more than 16,000 biological conditions, covering more than 30% of United States mortality. We hypothesized that genes coding for serum- and urine-detectable proteins, and showing differential expression of RNA in disease-damaged tissues would make ideal diagnostic protein biomarkers for those diseases. We showed that predicted protein biomarkers are significantly enriched for known diagnostic protein biomarkers in 22 diseases, with enrichment significantly higher in diseases for which at least three datasets are available. We then used this strategy to search for new biomarkers indicating acute rejection (AR) across different types of transplanted solid organs. We integrated three biopsy-based microarray studies of AR from pediatric renal, adult renal and adult cardiac transplantation and identified 45 genes upregulated in all three. From this set, we chose 10 proteins for serum ELISA assays in 39 renal transplant patients, and discovered three that were significantly higher in AR. Interestingly, all three proteins were also significantly higher during AR in the 63 cardiac transplant recipients studied. Our best marker, serum PECAM1, identified renal AR with 89% sensitivity and 75% specificity, and also showed increased expression in AR by immunohistochemistry in renal, hepatic and cardiac transplant biopsies. Our results demonstrate that integrating gene expression microarray measurements from disease samples and even publicly-available data sets can be a powerful, fast, and cost-effective strategy for the discovery of new diagnostic serum protein biomarkers.</description><subject>Biological markers</subject><subject>Biomarkers</subject><subject>Biomarkers - blood</subject><subject>Biomarkers - metabolism</subject><subject>Biomarkers - urine</subject><subject>Biopsy</subject><subject>Blood proteins</subject><subject>Blood Proteins - analysis</subject><subject>Blood Proteins - genetics</subject><subject>Cardiovascular Disorders/Cardiac Surgery and Transplantations</subject><subject>Computational Biology - methods</subject><subject>Data Mining</subject><subject>Databases, Genetic</subject><subject>Demographics</subject><subject>Disease</subject><subject>DNA microarrays</subject><subject>Enzyme-Linked Immunosorbent Assay</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genetic aspects</subject><subject>Genetics and Genomics/Bioinformatics</subject><subject>Genetics and Genomics/Gene Expression</subject><subject>Graft rejection</subject><subject>Graft Rejection - blood</subject><subject>Graft Rejection - diagnosis</subject><subject>Graft Rejection - metabolism</subject><subject>Graft Rejection - urine</subject><subject>Health aspects</subject><subject>Heart Transplantation - adverse effects</subject><subject>Heart Transplantation - immunology</subject><subject>Histocytochemistry</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Kidney Glomerulus - metabolism</subject><subject>Kidney Glomerulus - pathology</subject><subject>Kidney Transplantation - adverse effects</subject><subject>Kidney Transplantation - immunology</subject><subject>Mortality</subject><subject>Nephrology/Dialysis and Renal Transplantation</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Ovarian cancer</subject><subject>Pediatrics</subject><subject>Proteins</subject><subject>Proteinuria - blood</subject><subject>Proteinuria - urine</subject><subject>Reproducibility of Results</subject><subject>RNA</subject><subject>RNA - analysis</subject><subject>RNA - biosynthesis</subject><subject>RNA - genetics</subject><subject>ROC Curve</subject><subject>Transplants &amp; implants</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVk91u1DAQhSMEoqXwBggscYG42MU_ceLcIK3KX6WqSAWurYkz3nrJxovtoO6L8Lw43W3VlZAQ8kWcyXeONSeeonjO6JyJmr1d-TEM0M83pnVzRiltSvqgOGZSilktpHp4b39UPIlxRWneNtXj4ohTpWSt6HHx-72zFgMOyUHfbwlebwLGiB25vFgQG_yabMa2d4asnQkeQoAt6SABcd0ksg4jiRjGzAWf0A2kdX4N4QeGSKwPJKtinPmwhIGkAEPc9DAkEnCFJjk_EBg64tMVZtQPnZtq8WnxyEIf8dn-eVJ8__jh2-nn2fmXT2eni_OZqRVLs9pKCx03HEtb0VLVAlknGJiOSoMSZDm9KssMNUq1VgIwECBBQVkpzsRJ8XLnu-l91PtIo2Yir1owWWfibEd0HlZ6E1zubas9OH1TyH1pCMmZHrVhle0YCiOpKKlChVhZFBxai6zkmL3e7U8b2zV2JgcYoD8wPfwyuCu99L80b8qyVjwbvN4bBP9zxJj02kWDfU4U_Ri1Ek3ViLop_0nWsqoqrliVyVc7cgm5BzdYn482E60XXKiGcc6nGOZ_ofLqMF8MP6B1uX4geHMgyEzC67SEMUZ99vXyP9iLQ7bcsTf3KqC9i49RPQ3G7V_U02Do_WBk2Yv70d-JbidB_AHEzg5X</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Chen, Rong</creator><creator>Sigdel, Tara K</creator><creator>Li, Li</creator><creator>Kambham, Neeraja</creator><creator>Dudley, Joel T</creator><creator>Hsieh, Szu-Chuan</creator><creator>Klassen, R Bryan</creator><creator>Chen, Amery</creator><creator>Caohuu, Tuyen</creator><creator>Morgan, Alexander A</creator><creator>Valantine, Hannah A</creator><creator>Khush, Kiran K</creator><creator>Sarwal, Minnie M</creator><creator>Butte, Atul J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100901</creationdate><title>Differentially expressed RNA from public microarray data identifies serum protein biomarkers for cross-organ transplant rejection and other conditions</title><author>Chen, Rong ; Sigdel, Tara K ; Li, Li ; Kambham, Neeraja ; Dudley, Joel T ; Hsieh, Szu-Chuan ; Klassen, R Bryan ; Chen, Amery ; Caohuu, Tuyen ; Morgan, Alexander A ; Valantine, Hannah A ; Khush, Kiran K ; Sarwal, Minnie M ; Butte, Atul J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c781t-7f5fad2c2e4f604873e1d31acd05ce5a541d318f1c0c88bf5aa1a3a5a8a468213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological markers</topic><topic>Biomarkers</topic><topic>Biomarkers - blood</topic><topic>Biomarkers - metabolism</topic><topic>Biomarkers - urine</topic><topic>Biopsy</topic><topic>Blood proteins</topic><topic>Blood Proteins - analysis</topic><topic>Blood Proteins - genetics</topic><topic>Cardiovascular Disorders/Cardiac Surgery and Transplantations</topic><topic>Computational Biology - methods</topic><topic>Data Mining</topic><topic>Databases, Genetic</topic><topic>Demographics</topic><topic>Disease</topic><topic>DNA microarrays</topic><topic>Enzyme-Linked Immunosorbent Assay</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genetic aspects</topic><topic>Genetics and Genomics/Bioinformatics</topic><topic>Genetics and Genomics/Gene Expression</topic><topic>Graft rejection</topic><topic>Graft Rejection - blood</topic><topic>Graft Rejection - diagnosis</topic><topic>Graft Rejection - metabolism</topic><topic>Graft Rejection - urine</topic><topic>Health aspects</topic><topic>Heart Transplantation - adverse effects</topic><topic>Heart Transplantation - immunology</topic><topic>Histocytochemistry</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Kidney Glomerulus - metabolism</topic><topic>Kidney Glomerulus - pathology</topic><topic>Kidney Transplantation - adverse effects</topic><topic>Kidney Transplantation - immunology</topic><topic>Mortality</topic><topic>Nephrology/Dialysis and Renal Transplantation</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Ovarian cancer</topic><topic>Pediatrics</topic><topic>Proteins</topic><topic>Proteinuria - blood</topic><topic>Proteinuria - urine</topic><topic>Reproducibility of Results</topic><topic>RNA</topic><topic>RNA - analysis</topic><topic>RNA - biosynthesis</topic><topic>RNA - genetics</topic><topic>ROC Curve</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Sigdel, Tara K</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Kambham, Neeraja</creatorcontrib><creatorcontrib>Dudley, Joel T</creatorcontrib><creatorcontrib>Hsieh, Szu-Chuan</creatorcontrib><creatorcontrib>Klassen, R Bryan</creatorcontrib><creatorcontrib>Chen, Amery</creatorcontrib><creatorcontrib>Caohuu, Tuyen</creatorcontrib><creatorcontrib>Morgan, Alexander A</creatorcontrib><creatorcontrib>Valantine, Hannah A</creatorcontrib><creatorcontrib>Khush, Kiran K</creatorcontrib><creatorcontrib>Sarwal, Minnie M</creatorcontrib><creatorcontrib>Butte, Atul J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Rong</au><au>Sigdel, Tara K</au><au>Li, Li</au><au>Kambham, Neeraja</au><au>Dudley, Joel T</au><au>Hsieh, Szu-Chuan</au><au>Klassen, R Bryan</au><au>Chen, Amery</au><au>Caohuu, Tuyen</au><au>Morgan, Alexander A</au><au>Valantine, Hannah A</au><au>Khush, Kiran K</au><au>Sarwal, Minnie M</au><au>Butte, Atul J</au><au>Weiss, Scott T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentially expressed RNA from public microarray data identifies serum protein biomarkers for cross-organ transplant rejection and other conditions</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>6</volume><issue>9</issue><spage>e1000940</spage><pages>e1000940-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Serum proteins are routinely used to diagnose diseases, but are hard to find due to low sensitivity in screening the serum proteome. Public repositories of microarray data, such as the Gene Expression Omnibus (GEO), contain RNA expression profiles for more than 16,000 biological conditions, covering more than 30% of United States mortality. We hypothesized that genes coding for serum- and urine-detectable proteins, and showing differential expression of RNA in disease-damaged tissues would make ideal diagnostic protein biomarkers for those diseases. We showed that predicted protein biomarkers are significantly enriched for known diagnostic protein biomarkers in 22 diseases, with enrichment significantly higher in diseases for which at least three datasets are available. We then used this strategy to search for new biomarkers indicating acute rejection (AR) across different types of transplanted solid organs. We integrated three biopsy-based microarray studies of AR from pediatric renal, adult renal and adult cardiac transplantation and identified 45 genes upregulated in all three. From this set, we chose 10 proteins for serum ELISA assays in 39 renal transplant patients, and discovered three that were significantly higher in AR. Interestingly, all three proteins were also significantly higher during AR in the 63 cardiac transplant recipients studied. Our best marker, serum PECAM1, identified renal AR with 89% sensitivity and 75% specificity, and also showed increased expression in AR by immunohistochemistry in renal, hepatic and cardiac transplant biopsies. Our results demonstrate that integrating gene expression microarray measurements from disease samples and even publicly-available data sets can be a powerful, fast, and cost-effective strategy for the discovery of new diagnostic serum protein biomarkers.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20885780</pmid><doi>10.1371/journal.pcbi.1000940</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2010-09, Vol.6 (9), p.e1000940
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1313173157
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects Biological markers
Biomarkers
Biomarkers - blood
Biomarkers - metabolism
Biomarkers - urine
Biopsy
Blood proteins
Blood Proteins - analysis
Blood Proteins - genetics
Cardiovascular Disorders/Cardiac Surgery and Transplantations
Computational Biology - methods
Data Mining
Databases, Genetic
Demographics
Disease
DNA microarrays
Enzyme-Linked Immunosorbent Assay
Gene expression
Gene Expression Profiling
Genetic aspects
Genetics and Genomics/Bioinformatics
Genetics and Genomics/Gene Expression
Graft rejection
Graft Rejection - blood
Graft Rejection - diagnosis
Graft Rejection - metabolism
Graft Rejection - urine
Health aspects
Heart Transplantation - adverse effects
Heart Transplantation - immunology
Histocytochemistry
Humans
Identification and classification
Kidney Glomerulus - metabolism
Kidney Glomerulus - pathology
Kidney Transplantation - adverse effects
Kidney Transplantation - immunology
Mortality
Nephrology/Dialysis and Renal Transplantation
Oligonucleotide Array Sequence Analysis - methods
Ovarian cancer
Pediatrics
Proteins
Proteinuria - blood
Proteinuria - urine
Reproducibility of Results
RNA
RNA - analysis
RNA - biosynthesis
RNA - genetics
ROC Curve
Transplants & implants
title Differentially expressed RNA from public microarray data identifies serum protein biomarkers for cross-organ transplant rejection and other conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentially%20expressed%20RNA%20from%20public%20microarray%20data%20identifies%20serum%20protein%20biomarkers%20for%20cross-organ%20transplant%20rejection%20and%20other%20conditions&rft.jtitle=PLoS%20computational%20biology&rft.au=Chen,%20Rong&rft.date=2010-09-01&rft.volume=6&rft.issue=9&rft.spage=e1000940&rft.pages=e1000940-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1000940&rft_dat=%3Cgale_plos_%3EA238912227%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c781t-7f5fad2c2e4f604873e1d31acd05ce5a541d318f1c0c88bf5aa1a3a5a8a468213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=756662816&rft_id=info:pmid/20885780&rft_galeid=A238912227&rfr_iscdi=true