Loading…
Differentially expressed RNA from public microarray data identifies serum protein biomarkers for cross-organ transplant rejection and other conditions
Serum proteins are routinely used to diagnose diseases, but are hard to find due to low sensitivity in screening the serum proteome. Public repositories of microarray data, such as the Gene Expression Omnibus (GEO), contain RNA expression profiles for more than 16,000 biological conditions, covering...
Saved in:
Published in: | PLoS computational biology 2010-09, Vol.6 (9), p.e1000940 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c781t-7f5fad2c2e4f604873e1d31acd05ce5a541d318f1c0c88bf5aa1a3a5a8a468213 |
---|---|
cites | cdi_FETCH-LOGICAL-c781t-7f5fad2c2e4f604873e1d31acd05ce5a541d318f1c0c88bf5aa1a3a5a8a468213 |
container_end_page | |
container_issue | 9 |
container_start_page | e1000940 |
container_title | PLoS computational biology |
container_volume | 6 |
creator | Chen, Rong Sigdel, Tara K Li, Li Kambham, Neeraja Dudley, Joel T Hsieh, Szu-Chuan Klassen, R Bryan Chen, Amery Caohuu, Tuyen Morgan, Alexander A Valantine, Hannah A Khush, Kiran K Sarwal, Minnie M Butte, Atul J |
description | Serum proteins are routinely used to diagnose diseases, but are hard to find due to low sensitivity in screening the serum proteome. Public repositories of microarray data, such as the Gene Expression Omnibus (GEO), contain RNA expression profiles for more than 16,000 biological conditions, covering more than 30% of United States mortality. We hypothesized that genes coding for serum- and urine-detectable proteins, and showing differential expression of RNA in disease-damaged tissues would make ideal diagnostic protein biomarkers for those diseases. We showed that predicted protein biomarkers are significantly enriched for known diagnostic protein biomarkers in 22 diseases, with enrichment significantly higher in diseases for which at least three datasets are available. We then used this strategy to search for new biomarkers indicating acute rejection (AR) across different types of transplanted solid organs. We integrated three biopsy-based microarray studies of AR from pediatric renal, adult renal and adult cardiac transplantation and identified 45 genes upregulated in all three. From this set, we chose 10 proteins for serum ELISA assays in 39 renal transplant patients, and discovered three that were significantly higher in AR. Interestingly, all three proteins were also significantly higher during AR in the 63 cardiac transplant recipients studied. Our best marker, serum PECAM1, identified renal AR with 89% sensitivity and 75% specificity, and also showed increased expression in AR by immunohistochemistry in renal, hepatic and cardiac transplant biopsies. Our results demonstrate that integrating gene expression microarray measurements from disease samples and even publicly-available data sets can be a powerful, fast, and cost-effective strategy for the discovery of new diagnostic serum protein biomarkers. |
doi_str_mv | 10.1371/journal.pcbi.1000940 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313173157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A238912227</galeid><doaj_id>oai_doaj_org_article_c16fd1e3c503408e8ee6fe32abfe142e</doaj_id><sourcerecordid>A238912227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c781t-7f5fad2c2e4f604873e1d31acd05ce5a541d318f1c0c88bf5aa1a3a5a8a468213</originalsourceid><addsrcrecordid>eNqVk91u1DAQhSMEoqXwBggscYG42MU_ceLcIK3KX6WqSAWurYkz3nrJxovtoO6L8Lw43W3VlZAQ8kWcyXeONSeeonjO6JyJmr1d-TEM0M83pnVzRiltSvqgOGZSilktpHp4b39UPIlxRWneNtXj4ohTpWSt6HHx-72zFgMOyUHfbwlebwLGiB25vFgQG_yabMa2d4asnQkeQoAt6SABcd0ksg4jiRjGzAWf0A2kdX4N4QeGSKwPJKtinPmwhIGkAEPc9DAkEnCFJjk_EBg64tMVZtQPnZtq8WnxyEIf8dn-eVJ8__jh2-nn2fmXT2eni_OZqRVLs9pKCx03HEtb0VLVAlknGJiOSoMSZDm9KssMNUq1VgIwECBBQVkpzsRJ8XLnu-l91PtIo2Yir1owWWfibEd0HlZ6E1zubas9OH1TyH1pCMmZHrVhle0YCiOpKKlChVhZFBxai6zkmL3e7U8b2zV2JgcYoD8wPfwyuCu99L80b8qyVjwbvN4bBP9zxJj02kWDfU4U_Ri1Ek3ViLop_0nWsqoqrliVyVc7cgm5BzdYn482E60XXKiGcc6nGOZ_ofLqMF8MP6B1uX4geHMgyEzC67SEMUZ99vXyP9iLQ7bcsTf3KqC9i49RPQ3G7V_U02Do_WBk2Yv70d-JbidB_AHEzg5X</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>756662816</pqid></control><display><type>article</type><title>Differentially expressed RNA from public microarray data identifies serum protein biomarkers for cross-organ transplant rejection and other conditions</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Chen, Rong ; Sigdel, Tara K ; Li, Li ; Kambham, Neeraja ; Dudley, Joel T ; Hsieh, Szu-Chuan ; Klassen, R Bryan ; Chen, Amery ; Caohuu, Tuyen ; Morgan, Alexander A ; Valantine, Hannah A ; Khush, Kiran K ; Sarwal, Minnie M ; Butte, Atul J</creator><contributor>Weiss, Scott T.</contributor><creatorcontrib>Chen, Rong ; Sigdel, Tara K ; Li, Li ; Kambham, Neeraja ; Dudley, Joel T ; Hsieh, Szu-Chuan ; Klassen, R Bryan ; Chen, Amery ; Caohuu, Tuyen ; Morgan, Alexander A ; Valantine, Hannah A ; Khush, Kiran K ; Sarwal, Minnie M ; Butte, Atul J ; Weiss, Scott T.</creatorcontrib><description>Serum proteins are routinely used to diagnose diseases, but are hard to find due to low sensitivity in screening the serum proteome. Public repositories of microarray data, such as the Gene Expression Omnibus (GEO), contain RNA expression profiles for more than 16,000 biological conditions, covering more than 30% of United States mortality. We hypothesized that genes coding for serum- and urine-detectable proteins, and showing differential expression of RNA in disease-damaged tissues would make ideal diagnostic protein biomarkers for those diseases. We showed that predicted protein biomarkers are significantly enriched for known diagnostic protein biomarkers in 22 diseases, with enrichment significantly higher in diseases for which at least three datasets are available. We then used this strategy to search for new biomarkers indicating acute rejection (AR) across different types of transplanted solid organs. We integrated three biopsy-based microarray studies of AR from pediatric renal, adult renal and adult cardiac transplantation and identified 45 genes upregulated in all three. From this set, we chose 10 proteins for serum ELISA assays in 39 renal transplant patients, and discovered three that were significantly higher in AR. Interestingly, all three proteins were also significantly higher during AR in the 63 cardiac transplant recipients studied. Our best marker, serum PECAM1, identified renal AR with 89% sensitivity and 75% specificity, and also showed increased expression in AR by immunohistochemistry in renal, hepatic and cardiac transplant biopsies. Our results demonstrate that integrating gene expression microarray measurements from disease samples and even publicly-available data sets can be a powerful, fast, and cost-effective strategy for the discovery of new diagnostic serum protein biomarkers.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1000940</identifier><identifier>PMID: 20885780</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biological markers ; Biomarkers ; Biomarkers - blood ; Biomarkers - metabolism ; Biomarkers - urine ; Biopsy ; Blood proteins ; Blood Proteins - analysis ; Blood Proteins - genetics ; Cardiovascular Disorders/Cardiac Surgery and Transplantations ; Computational Biology - methods ; Data Mining ; Databases, Genetic ; Demographics ; Disease ; DNA microarrays ; Enzyme-Linked Immunosorbent Assay ; Gene expression ; Gene Expression Profiling ; Genetic aspects ; Genetics and Genomics/Bioinformatics ; Genetics and Genomics/Gene Expression ; Graft rejection ; Graft Rejection - blood ; Graft Rejection - diagnosis ; Graft Rejection - metabolism ; Graft Rejection - urine ; Health aspects ; Heart Transplantation - adverse effects ; Heart Transplantation - immunology ; Histocytochemistry ; Humans ; Identification and classification ; Kidney Glomerulus - metabolism ; Kidney Glomerulus - pathology ; Kidney Transplantation - adverse effects ; Kidney Transplantation - immunology ; Mortality ; Nephrology/Dialysis and Renal Transplantation ; Oligonucleotide Array Sequence Analysis - methods ; Ovarian cancer ; Pediatrics ; Proteins ; Proteinuria - blood ; Proteinuria - urine ; Reproducibility of Results ; RNA ; RNA - analysis ; RNA - biosynthesis ; RNA - genetics ; ROC Curve ; Transplants & implants</subject><ispartof>PLoS computational biology, 2010-09, Vol.6 (9), p.e1000940</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>Chen et al. 2010</rights><rights>2010 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Chen R, Sigdel TK, Li L, Kambham N, Dudley JT, et al. (2010) Differentially Expressed RNA from Public Microarray Data Identifies Serum Protein Biomarkers for Cross-Organ Transplant Rejection and Other Conditions. PLoS Comput Biol 6(9): e1000940. doi:10.1371/journal.pcbi.1000940</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c781t-7f5fad2c2e4f604873e1d31acd05ce5a541d318f1c0c88bf5aa1a3a5a8a468213</citedby><cites>FETCH-LOGICAL-c781t-7f5fad2c2e4f604873e1d31acd05ce5a541d318f1c0c88bf5aa1a3a5a8a468213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944782/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944782/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20885780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Weiss, Scott T.</contributor><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Sigdel, Tara K</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Kambham, Neeraja</creatorcontrib><creatorcontrib>Dudley, Joel T</creatorcontrib><creatorcontrib>Hsieh, Szu-Chuan</creatorcontrib><creatorcontrib>Klassen, R Bryan</creatorcontrib><creatorcontrib>Chen, Amery</creatorcontrib><creatorcontrib>Caohuu, Tuyen</creatorcontrib><creatorcontrib>Morgan, Alexander A</creatorcontrib><creatorcontrib>Valantine, Hannah A</creatorcontrib><creatorcontrib>Khush, Kiran K</creatorcontrib><creatorcontrib>Sarwal, Minnie M</creatorcontrib><creatorcontrib>Butte, Atul J</creatorcontrib><title>Differentially expressed RNA from public microarray data identifies serum protein biomarkers for cross-organ transplant rejection and other conditions</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Serum proteins are routinely used to diagnose diseases, but are hard to find due to low sensitivity in screening the serum proteome. Public repositories of microarray data, such as the Gene Expression Omnibus (GEO), contain RNA expression profiles for more than 16,000 biological conditions, covering more than 30% of United States mortality. We hypothesized that genes coding for serum- and urine-detectable proteins, and showing differential expression of RNA in disease-damaged tissues would make ideal diagnostic protein biomarkers for those diseases. We showed that predicted protein biomarkers are significantly enriched for known diagnostic protein biomarkers in 22 diseases, with enrichment significantly higher in diseases for which at least three datasets are available. We then used this strategy to search for new biomarkers indicating acute rejection (AR) across different types of transplanted solid organs. We integrated three biopsy-based microarray studies of AR from pediatric renal, adult renal and adult cardiac transplantation and identified 45 genes upregulated in all three. From this set, we chose 10 proteins for serum ELISA assays in 39 renal transplant patients, and discovered three that were significantly higher in AR. Interestingly, all three proteins were also significantly higher during AR in the 63 cardiac transplant recipients studied. Our best marker, serum PECAM1, identified renal AR with 89% sensitivity and 75% specificity, and also showed increased expression in AR by immunohistochemistry in renal, hepatic and cardiac transplant biopsies. Our results demonstrate that integrating gene expression microarray measurements from disease samples and even publicly-available data sets can be a powerful, fast, and cost-effective strategy for the discovery of new diagnostic serum protein biomarkers.</description><subject>Biological markers</subject><subject>Biomarkers</subject><subject>Biomarkers - blood</subject><subject>Biomarkers - metabolism</subject><subject>Biomarkers - urine</subject><subject>Biopsy</subject><subject>Blood proteins</subject><subject>Blood Proteins - analysis</subject><subject>Blood Proteins - genetics</subject><subject>Cardiovascular Disorders/Cardiac Surgery and Transplantations</subject><subject>Computational Biology - methods</subject><subject>Data Mining</subject><subject>Databases, Genetic</subject><subject>Demographics</subject><subject>Disease</subject><subject>DNA microarrays</subject><subject>Enzyme-Linked Immunosorbent Assay</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genetic aspects</subject><subject>Genetics and Genomics/Bioinformatics</subject><subject>Genetics and Genomics/Gene Expression</subject><subject>Graft rejection</subject><subject>Graft Rejection - blood</subject><subject>Graft Rejection - diagnosis</subject><subject>Graft Rejection - metabolism</subject><subject>Graft Rejection - urine</subject><subject>Health aspects</subject><subject>Heart Transplantation - adverse effects</subject><subject>Heart Transplantation - immunology</subject><subject>Histocytochemistry</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Kidney Glomerulus - metabolism</subject><subject>Kidney Glomerulus - pathology</subject><subject>Kidney Transplantation - adverse effects</subject><subject>Kidney Transplantation - immunology</subject><subject>Mortality</subject><subject>Nephrology/Dialysis and Renal Transplantation</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Ovarian cancer</subject><subject>Pediatrics</subject><subject>Proteins</subject><subject>Proteinuria - blood</subject><subject>Proteinuria - urine</subject><subject>Reproducibility of Results</subject><subject>RNA</subject><subject>RNA - analysis</subject><subject>RNA - biosynthesis</subject><subject>RNA - genetics</subject><subject>ROC Curve</subject><subject>Transplants & implants</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVk91u1DAQhSMEoqXwBggscYG42MU_ceLcIK3KX6WqSAWurYkz3nrJxovtoO6L8Lw43W3VlZAQ8kWcyXeONSeeonjO6JyJmr1d-TEM0M83pnVzRiltSvqgOGZSilktpHp4b39UPIlxRWneNtXj4ohTpWSt6HHx-72zFgMOyUHfbwlebwLGiB25vFgQG_yabMa2d4asnQkeQoAt6SABcd0ksg4jiRjGzAWf0A2kdX4N4QeGSKwPJKtinPmwhIGkAEPc9DAkEnCFJjk_EBg64tMVZtQPnZtq8WnxyEIf8dn-eVJ8__jh2-nn2fmXT2eni_OZqRVLs9pKCx03HEtb0VLVAlknGJiOSoMSZDm9KssMNUq1VgIwECBBQVkpzsRJ8XLnu-l91PtIo2Yir1owWWfibEd0HlZ6E1zubas9OH1TyH1pCMmZHrVhle0YCiOpKKlChVhZFBxai6zkmL3e7U8b2zV2JgcYoD8wPfwyuCu99L80b8qyVjwbvN4bBP9zxJj02kWDfU4U_Ri1Ek3ViLop_0nWsqoqrliVyVc7cgm5BzdYn482E60XXKiGcc6nGOZ_ofLqMF8MP6B1uX4geHMgyEzC67SEMUZ99vXyP9iLQ7bcsTf3KqC9i49RPQ3G7V_U02Do_WBk2Yv70d-JbidB_AHEzg5X</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Chen, Rong</creator><creator>Sigdel, Tara K</creator><creator>Li, Li</creator><creator>Kambham, Neeraja</creator><creator>Dudley, Joel T</creator><creator>Hsieh, Szu-Chuan</creator><creator>Klassen, R Bryan</creator><creator>Chen, Amery</creator><creator>Caohuu, Tuyen</creator><creator>Morgan, Alexander A</creator><creator>Valantine, Hannah A</creator><creator>Khush, Kiran K</creator><creator>Sarwal, Minnie M</creator><creator>Butte, Atul J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100901</creationdate><title>Differentially expressed RNA from public microarray data identifies serum protein biomarkers for cross-organ transplant rejection and other conditions</title><author>Chen, Rong ; Sigdel, Tara K ; Li, Li ; Kambham, Neeraja ; Dudley, Joel T ; Hsieh, Szu-Chuan ; Klassen, R Bryan ; Chen, Amery ; Caohuu, Tuyen ; Morgan, Alexander A ; Valantine, Hannah A ; Khush, Kiran K ; Sarwal, Minnie M ; Butte, Atul J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c781t-7f5fad2c2e4f604873e1d31acd05ce5a541d318f1c0c88bf5aa1a3a5a8a468213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological markers</topic><topic>Biomarkers</topic><topic>Biomarkers - blood</topic><topic>Biomarkers - metabolism</topic><topic>Biomarkers - urine</topic><topic>Biopsy</topic><topic>Blood proteins</topic><topic>Blood Proteins - analysis</topic><topic>Blood Proteins - genetics</topic><topic>Cardiovascular Disorders/Cardiac Surgery and Transplantations</topic><topic>Computational Biology - methods</topic><topic>Data Mining</topic><topic>Databases, Genetic</topic><topic>Demographics</topic><topic>Disease</topic><topic>DNA microarrays</topic><topic>Enzyme-Linked Immunosorbent Assay</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genetic aspects</topic><topic>Genetics and Genomics/Bioinformatics</topic><topic>Genetics and Genomics/Gene Expression</topic><topic>Graft rejection</topic><topic>Graft Rejection - blood</topic><topic>Graft Rejection - diagnosis</topic><topic>Graft Rejection - metabolism</topic><topic>Graft Rejection - urine</topic><topic>Health aspects</topic><topic>Heart Transplantation - adverse effects</topic><topic>Heart Transplantation - immunology</topic><topic>Histocytochemistry</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Kidney Glomerulus - metabolism</topic><topic>Kidney Glomerulus - pathology</topic><topic>Kidney Transplantation - adverse effects</topic><topic>Kidney Transplantation - immunology</topic><topic>Mortality</topic><topic>Nephrology/Dialysis and Renal Transplantation</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Ovarian cancer</topic><topic>Pediatrics</topic><topic>Proteins</topic><topic>Proteinuria - blood</topic><topic>Proteinuria - urine</topic><topic>Reproducibility of Results</topic><topic>RNA</topic><topic>RNA - analysis</topic><topic>RNA - biosynthesis</topic><topic>RNA - genetics</topic><topic>ROC Curve</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Sigdel, Tara K</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Kambham, Neeraja</creatorcontrib><creatorcontrib>Dudley, Joel T</creatorcontrib><creatorcontrib>Hsieh, Szu-Chuan</creatorcontrib><creatorcontrib>Klassen, R Bryan</creatorcontrib><creatorcontrib>Chen, Amery</creatorcontrib><creatorcontrib>Caohuu, Tuyen</creatorcontrib><creatorcontrib>Morgan, Alexander A</creatorcontrib><creatorcontrib>Valantine, Hannah A</creatorcontrib><creatorcontrib>Khush, Kiran K</creatorcontrib><creatorcontrib>Sarwal, Minnie M</creatorcontrib><creatorcontrib>Butte, Atul J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Rong</au><au>Sigdel, Tara K</au><au>Li, Li</au><au>Kambham, Neeraja</au><au>Dudley, Joel T</au><au>Hsieh, Szu-Chuan</au><au>Klassen, R Bryan</au><au>Chen, Amery</au><au>Caohuu, Tuyen</au><au>Morgan, Alexander A</au><au>Valantine, Hannah A</au><au>Khush, Kiran K</au><au>Sarwal, Minnie M</au><au>Butte, Atul J</au><au>Weiss, Scott T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentially expressed RNA from public microarray data identifies serum protein biomarkers for cross-organ transplant rejection and other conditions</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>6</volume><issue>9</issue><spage>e1000940</spage><pages>e1000940-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Serum proteins are routinely used to diagnose diseases, but are hard to find due to low sensitivity in screening the serum proteome. Public repositories of microarray data, such as the Gene Expression Omnibus (GEO), contain RNA expression profiles for more than 16,000 biological conditions, covering more than 30% of United States mortality. We hypothesized that genes coding for serum- and urine-detectable proteins, and showing differential expression of RNA in disease-damaged tissues would make ideal diagnostic protein biomarkers for those diseases. We showed that predicted protein biomarkers are significantly enriched for known diagnostic protein biomarkers in 22 diseases, with enrichment significantly higher in diseases for which at least three datasets are available. We then used this strategy to search for new biomarkers indicating acute rejection (AR) across different types of transplanted solid organs. We integrated three biopsy-based microarray studies of AR from pediatric renal, adult renal and adult cardiac transplantation and identified 45 genes upregulated in all three. From this set, we chose 10 proteins for serum ELISA assays in 39 renal transplant patients, and discovered three that were significantly higher in AR. Interestingly, all three proteins were also significantly higher during AR in the 63 cardiac transplant recipients studied. Our best marker, serum PECAM1, identified renal AR with 89% sensitivity and 75% specificity, and also showed increased expression in AR by immunohistochemistry in renal, hepatic and cardiac transplant biopsies. Our results demonstrate that integrating gene expression microarray measurements from disease samples and even publicly-available data sets can be a powerful, fast, and cost-effective strategy for the discovery of new diagnostic serum protein biomarkers.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20885780</pmid><doi>10.1371/journal.pcbi.1000940</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2010-09, Vol.6 (9), p.e1000940 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1313173157 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central |
subjects | Biological markers Biomarkers Biomarkers - blood Biomarkers - metabolism Biomarkers - urine Biopsy Blood proteins Blood Proteins - analysis Blood Proteins - genetics Cardiovascular Disorders/Cardiac Surgery and Transplantations Computational Biology - methods Data Mining Databases, Genetic Demographics Disease DNA microarrays Enzyme-Linked Immunosorbent Assay Gene expression Gene Expression Profiling Genetic aspects Genetics and Genomics/Bioinformatics Genetics and Genomics/Gene Expression Graft rejection Graft Rejection - blood Graft Rejection - diagnosis Graft Rejection - metabolism Graft Rejection - urine Health aspects Heart Transplantation - adverse effects Heart Transplantation - immunology Histocytochemistry Humans Identification and classification Kidney Glomerulus - metabolism Kidney Glomerulus - pathology Kidney Transplantation - adverse effects Kidney Transplantation - immunology Mortality Nephrology/Dialysis and Renal Transplantation Oligonucleotide Array Sequence Analysis - methods Ovarian cancer Pediatrics Proteins Proteinuria - blood Proteinuria - urine Reproducibility of Results RNA RNA - analysis RNA - biosynthesis RNA - genetics ROC Curve Transplants & implants |
title | Differentially expressed RNA from public microarray data identifies serum protein biomarkers for cross-organ transplant rejection and other conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentially%20expressed%20RNA%20from%20public%20microarray%20data%20identifies%20serum%20protein%20biomarkers%20for%20cross-organ%20transplant%20rejection%20and%20other%20conditions&rft.jtitle=PLoS%20computational%20biology&rft.au=Chen,%20Rong&rft.date=2010-09-01&rft.volume=6&rft.issue=9&rft.spage=e1000940&rft.pages=e1000940-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1000940&rft_dat=%3Cgale_plos_%3EA238912227%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c781t-7f5fad2c2e4f604873e1d31acd05ce5a541d318f1c0c88bf5aa1a3a5a8a468213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=756662816&rft_id=info:pmid/20885780&rft_galeid=A238912227&rfr_iscdi=true |