Loading…

Stimulus-dependent state transition between synchronized oscillation and randomly repetitive burst in a model cerebellar granular layer

Information processing of the cerebellar granular layer composed of granule and Golgi cells is regarded as an important first step toward the cerebellar computation. Our previous theoretical studies have shown that granule cells can exhibit random alternation between burst and silent modes, which pr...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2011-07, Vol.7 (7), p.e1002087-e1002087
Main Authors: Honda, Takeru, Yamazaki, Tadashi, Tanaka, Shigeru, Nagao, Soichi, Nishino, Tetsuro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c563t-8187bd23fa5fbf950bf4c0e3396dd33a097d5e1547bc14824d0718a04cc2949c3
cites cdi_FETCH-LOGICAL-c563t-8187bd23fa5fbf950bf4c0e3396dd33a097d5e1547bc14824d0718a04cc2949c3
container_end_page e1002087
container_issue 7
container_start_page e1002087
container_title PLoS computational biology
container_volume 7
creator Honda, Takeru
Yamazaki, Tadashi
Tanaka, Shigeru
Nagao, Soichi
Nishino, Tetsuro
description Information processing of the cerebellar granular layer composed of granule and Golgi cells is regarded as an important first step toward the cerebellar computation. Our previous theoretical studies have shown that granule cells can exhibit random alternation between burst and silent modes, which provides a basis of population representation of the passage-of-time (POT) from the onset of external input stimuli. On the other hand, another computational study has reported that granule cells can exhibit synchronized oscillation of activity, as consistent with observed oscillation in local field potential recorded from the granular layer while animals keep still. Here we have a question of whether an identical network model can explain these distinct dynamics. In the present study, we carried out computer simulations based on a spiking network model of the granular layer varying two parameters: the strength of a current injected to granule cells and the concentration of Mg²⁺ which controls the conductance of NMDA channels assumed on the Golgi cell dendrites. The simulations showed that cells in the granular layer can switch activity states between synchronized oscillation and random burst-silent alternation depending on the two parameters. For higher Mg²⁺ concentration and a weaker injected current, granule and Golgi cells elicited spikes synchronously (synchronized oscillation state). In contrast, for lower Mg²⁺ concentration and a stronger injected current, those cells showed the random burst-silent alternation (POT-representing state). It is suggested that NMDA channels on the Golgi cell dendrites play an important role for determining how the granular layer works in response to external input.
doi_str_mv 10.1371/journal.pcbi.1002087
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1313181381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_18e5301dee1644d69595b3926a8ed817</doaj_id><sourcerecordid>878822896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-8187bd23fa5fbf950bf4c0e3396dd33a097d5e1547bc14824d0718a04cc2949c3</originalsourceid><addsrcrecordid>eNpVUl1vFCEUnRiNrav_wChvPs0KAwzMi4lp_GjSxAf1mTBwZ8uGgRWYNusf8G_LdrdNG0i44Z5z7uVymuYtwWtCBfm4jUsK2q93ZnRrgnGHpXjWnBPOaSsol88fxWfNq5y3GNdw6F82Zx0RYqjZ8-bfz-LmxS-5tbCDYCEUlIsugErSIbviYkAjlFuAgPI-mOsUg_sLFsVsnPf6DqCDRRVu4-z3KFWhUok3gMYl5YJcBaA5WvDIQIIRKi2hTSUsh8DrPaTXzYtJ-wxvTueq-f31y6-L7-3Vj2-XF5-vWsN7WlpJpBhtRyfNp3EaOB4nZjBQOvTWUqrxICwHwpkYDWGyYxYLIjVmxnQDGwxdNe-PujsfszrNMCtC65KE1r1qLo8IG_VW7ZKbddqrqJ26u4hpo3QqznhQRAKnmFgA0jNm-4EPfKRD12sJVhJRtT6dqi3jDNbU6Sbtn4g-zQR3rTbxRtV2etbJKvDhJJDinwVyUbPL5jDAAHHJSgopu65-akWyI9KkmHOC6aEKwepgmPvHqoNh1MkwlfbucYcPpHuH0P88lsMd</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>878822896</pqid></control><display><type>article</type><title>Stimulus-dependent state transition between synchronized oscillation and randomly repetitive burst in a model cerebellar granular layer</title><source>PubMed (Medline)</source><source>Publicly Available Content (ProQuest)</source><creator>Honda, Takeru ; Yamazaki, Tadashi ; Tanaka, Shigeru ; Nagao, Soichi ; Nishino, Tetsuro</creator><creatorcontrib>Honda, Takeru ; Yamazaki, Tadashi ; Tanaka, Shigeru ; Nagao, Soichi ; Nishino, Tetsuro</creatorcontrib><description>Information processing of the cerebellar granular layer composed of granule and Golgi cells is regarded as an important first step toward the cerebellar computation. Our previous theoretical studies have shown that granule cells can exhibit random alternation between burst and silent modes, which provides a basis of population representation of the passage-of-time (POT) from the onset of external input stimuli. On the other hand, another computational study has reported that granule cells can exhibit synchronized oscillation of activity, as consistent with observed oscillation in local field potential recorded from the granular layer while animals keep still. Here we have a question of whether an identical network model can explain these distinct dynamics. In the present study, we carried out computer simulations based on a spiking network model of the granular layer varying two parameters: the strength of a current injected to granule cells and the concentration of Mg²⁺ which controls the conductance of NMDA channels assumed on the Golgi cell dendrites. The simulations showed that cells in the granular layer can switch activity states between synchronized oscillation and random burst-silent alternation depending on the two parameters. For higher Mg²⁺ concentration and a weaker injected current, granule and Golgi cells elicited spikes synchronously (synchronized oscillation state). In contrast, for lower Mg²⁺ concentration and a stronger injected current, those cells showed the random burst-silent alternation (POT-representing state). It is suggested that NMDA channels on the Golgi cell dendrites play an important role for determining how the granular layer works in response to external input.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1002087</identifier><identifier>PMID: 21779155</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Action Potentials - physiology ; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - metabolism ; Animals ; Biology ; Cerebellar Cortex - cytology ; Cerebellar Cortex - metabolism ; Cerebellar Cortex - physiology ; Computer Simulation ; Dendrites - physiology ; gamma-Aminobutyric Acid - metabolism ; Interneurons ; Magnesium - metabolism ; Models, Neurological ; N-Methylaspartate - metabolism ; Neurons - metabolism ; Neurons - physiology ; Rats ; Rest - physiology ; Studies</subject><ispartof>PLoS computational biology, 2011-07, Vol.7 (7), p.e1002087-e1002087</ispartof><rights>Honda et al. 2011</rights><rights>2011 Honda et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Honda T, Yamazaki T, Tanaka S, Nagao S, Nishino T (2011) Stimulus-Dependent State Transition between Synchronized Oscillation and Randomly Repetitive Burst in a Model Cerebellar Granular Layer. PLoS Comput Biol 7(7): e1002087. doi:10.1371/journal.pcbi.1002087</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-8187bd23fa5fbf950bf4c0e3396dd33a097d5e1547bc14824d0718a04cc2949c3</citedby><cites>FETCH-LOGICAL-c563t-8187bd23fa5fbf950bf4c0e3396dd33a097d5e1547bc14824d0718a04cc2949c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136428/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136428/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,36990,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21779155$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Honda, Takeru</creatorcontrib><creatorcontrib>Yamazaki, Tadashi</creatorcontrib><creatorcontrib>Tanaka, Shigeru</creatorcontrib><creatorcontrib>Nagao, Soichi</creatorcontrib><creatorcontrib>Nishino, Tetsuro</creatorcontrib><title>Stimulus-dependent state transition between synchronized oscillation and randomly repetitive burst in a model cerebellar granular layer</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Information processing of the cerebellar granular layer composed of granule and Golgi cells is regarded as an important first step toward the cerebellar computation. Our previous theoretical studies have shown that granule cells can exhibit random alternation between burst and silent modes, which provides a basis of population representation of the passage-of-time (POT) from the onset of external input stimuli. On the other hand, another computational study has reported that granule cells can exhibit synchronized oscillation of activity, as consistent with observed oscillation in local field potential recorded from the granular layer while animals keep still. Here we have a question of whether an identical network model can explain these distinct dynamics. In the present study, we carried out computer simulations based on a spiking network model of the granular layer varying two parameters: the strength of a current injected to granule cells and the concentration of Mg²⁺ which controls the conductance of NMDA channels assumed on the Golgi cell dendrites. The simulations showed that cells in the granular layer can switch activity states between synchronized oscillation and random burst-silent alternation depending on the two parameters. For higher Mg²⁺ concentration and a weaker injected current, granule and Golgi cells elicited spikes synchronously (synchronized oscillation state). In contrast, for lower Mg²⁺ concentration and a stronger injected current, those cells showed the random burst-silent alternation (POT-representing state). It is suggested that NMDA channels on the Golgi cell dendrites play an important role for determining how the granular layer works in response to external input.</description><subject>Action Potentials - physiology</subject><subject>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - metabolism</subject><subject>Animals</subject><subject>Biology</subject><subject>Cerebellar Cortex - cytology</subject><subject>Cerebellar Cortex - metabolism</subject><subject>Cerebellar Cortex - physiology</subject><subject>Computer Simulation</subject><subject>Dendrites - physiology</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Interneurons</subject><subject>Magnesium - metabolism</subject><subject>Models, Neurological</subject><subject>N-Methylaspartate - metabolism</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Rats</subject><subject>Rest - physiology</subject><subject>Studies</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVUl1vFCEUnRiNrav_wChvPs0KAwzMi4lp_GjSxAf1mTBwZ8uGgRWYNusf8G_LdrdNG0i44Z5z7uVymuYtwWtCBfm4jUsK2q93ZnRrgnGHpXjWnBPOaSsol88fxWfNq5y3GNdw6F82Zx0RYqjZ8-bfz-LmxS-5tbCDYCEUlIsugErSIbviYkAjlFuAgPI-mOsUg_sLFsVsnPf6DqCDRRVu4-z3KFWhUok3gMYl5YJcBaA5WvDIQIIRKi2hTSUsh8DrPaTXzYtJ-wxvTueq-f31y6-L7-3Vj2-XF5-vWsN7WlpJpBhtRyfNp3EaOB4nZjBQOvTWUqrxICwHwpkYDWGyYxYLIjVmxnQDGwxdNe-PujsfszrNMCtC65KE1r1qLo8IG_VW7ZKbddqrqJ26u4hpo3QqznhQRAKnmFgA0jNm-4EPfKRD12sJVhJRtT6dqi3jDNbU6Sbtn4g-zQR3rTbxRtV2etbJKvDhJJDinwVyUbPL5jDAAHHJSgopu65-akWyI9KkmHOC6aEKwepgmPvHqoNh1MkwlfbucYcPpHuH0P88lsMd</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Honda, Takeru</creator><creator>Yamazaki, Tadashi</creator><creator>Tanaka, Shigeru</creator><creator>Nagao, Soichi</creator><creator>Nishino, Tetsuro</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110701</creationdate><title>Stimulus-dependent state transition between synchronized oscillation and randomly repetitive burst in a model cerebellar granular layer</title><author>Honda, Takeru ; Yamazaki, Tadashi ; Tanaka, Shigeru ; Nagao, Soichi ; Nishino, Tetsuro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-8187bd23fa5fbf950bf4c0e3396dd33a097d5e1547bc14824d0718a04cc2949c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Action Potentials - physiology</topic><topic>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - metabolism</topic><topic>Animals</topic><topic>Biology</topic><topic>Cerebellar Cortex - cytology</topic><topic>Cerebellar Cortex - metabolism</topic><topic>Cerebellar Cortex - physiology</topic><topic>Computer Simulation</topic><topic>Dendrites - physiology</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Interneurons</topic><topic>Magnesium - metabolism</topic><topic>Models, Neurological</topic><topic>N-Methylaspartate - metabolism</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Rats</topic><topic>Rest - physiology</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Honda, Takeru</creatorcontrib><creatorcontrib>Yamazaki, Tadashi</creatorcontrib><creatorcontrib>Tanaka, Shigeru</creatorcontrib><creatorcontrib>Nagao, Soichi</creatorcontrib><creatorcontrib>Nishino, Tetsuro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Honda, Takeru</au><au>Yamazaki, Tadashi</au><au>Tanaka, Shigeru</au><au>Nagao, Soichi</au><au>Nishino, Tetsuro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stimulus-dependent state transition between synchronized oscillation and randomly repetitive burst in a model cerebellar granular layer</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>7</volume><issue>7</issue><spage>e1002087</spage><epage>e1002087</epage><pages>e1002087-e1002087</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Information processing of the cerebellar granular layer composed of granule and Golgi cells is regarded as an important first step toward the cerebellar computation. Our previous theoretical studies have shown that granule cells can exhibit random alternation between burst and silent modes, which provides a basis of population representation of the passage-of-time (POT) from the onset of external input stimuli. On the other hand, another computational study has reported that granule cells can exhibit synchronized oscillation of activity, as consistent with observed oscillation in local field potential recorded from the granular layer while animals keep still. Here we have a question of whether an identical network model can explain these distinct dynamics. In the present study, we carried out computer simulations based on a spiking network model of the granular layer varying two parameters: the strength of a current injected to granule cells and the concentration of Mg²⁺ which controls the conductance of NMDA channels assumed on the Golgi cell dendrites. The simulations showed that cells in the granular layer can switch activity states between synchronized oscillation and random burst-silent alternation depending on the two parameters. For higher Mg²⁺ concentration and a weaker injected current, granule and Golgi cells elicited spikes synchronously (synchronized oscillation state). In contrast, for lower Mg²⁺ concentration and a stronger injected current, those cells showed the random burst-silent alternation (POT-representing state). It is suggested that NMDA channels on the Golgi cell dendrites play an important role for determining how the granular layer works in response to external input.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21779155</pmid><doi>10.1371/journal.pcbi.1002087</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2011-07, Vol.7 (7), p.e1002087-e1002087
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1313181381
source PubMed (Medline); Publicly Available Content (ProQuest)
subjects Action Potentials - physiology
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - metabolism
Animals
Biology
Cerebellar Cortex - cytology
Cerebellar Cortex - metabolism
Cerebellar Cortex - physiology
Computer Simulation
Dendrites - physiology
gamma-Aminobutyric Acid - metabolism
Interneurons
Magnesium - metabolism
Models, Neurological
N-Methylaspartate - metabolism
Neurons - metabolism
Neurons - physiology
Rats
Rest - physiology
Studies
title Stimulus-dependent state transition between synchronized oscillation and randomly repetitive burst in a model cerebellar granular layer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stimulus-dependent%20state%20transition%20between%20synchronized%20oscillation%20and%20randomly%20repetitive%20burst%20in%20a%20model%20cerebellar%20granular%20layer&rft.jtitle=PLoS%20computational%20biology&rft.au=Honda,%20Takeru&rft.date=2011-07-01&rft.volume=7&rft.issue=7&rft.spage=e1002087&rft.epage=e1002087&rft.pages=e1002087-e1002087&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1002087&rft_dat=%3Cproquest_plos_%3E878822896%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c563t-8187bd23fa5fbf950bf4c0e3396dd33a097d5e1547bc14824d0718a04cc2949c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=878822896&rft_id=info:pmid/21779155&rfr_iscdi=true