Loading…

Rational engineering of enzyme allosteric regulation through sequence evolution analysis

Control of enzyme allosteric regulation is required to drive metabolic flux toward desired levels. Although the three-dimensional (3D) structures of many enzyme-ligand complexes are available, it is still difficult to rationally engineer an allosterically regulatable enzyme without decreasing its ca...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2012-07, Vol.8 (7), p.e1002612-e1002612
Main Authors: Yang, Jae-Seong, Seo, Sang Woo, Jang, Sungho, Jung, Gyoo Yeol, Kim, Sanguk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c633t-49df87677cba03ccc0811b4764a3ee5e748d24c820b476365694b5b1ce1235943
cites cdi_FETCH-LOGICAL-c633t-49df87677cba03ccc0811b4764a3ee5e748d24c820b476365694b5b1ce1235943
container_end_page e1002612
container_issue 7
container_start_page e1002612
container_title PLoS computational biology
container_volume 8
creator Yang, Jae-Seong
Seo, Sang Woo
Jang, Sungho
Jung, Gyoo Yeol
Kim, Sanguk
description Control of enzyme allosteric regulation is required to drive metabolic flux toward desired levels. Although the three-dimensional (3D) structures of many enzyme-ligand complexes are available, it is still difficult to rationally engineer an allosterically regulatable enzyme without decreasing its catalytic activity. Here, we describe an effective strategy to deregulate the allosteric inhibition of enzymes based on the molecular evolution and physicochemical characteristics of allosteric ligand-binding sites. We found that allosteric sites are evolutionarily variable and comprised of more hydrophobic residues than catalytic sites. We applied our findings to design mutations in selected target residues that deregulate the allosteric activity of fructose-1,6-bisphosphatase (FBPase). Specifically, charged amino acids at less conserved positions were substituted with hydrophobic or neutral amino acids with similar sizes. The engineered proteins successfully diminished the allosteric inhibition of E. coli FBPase without affecting its catalytic efficiency. We expect that our method will aid the rational design of enzyme allosteric regulation strategies and facilitate the control of metabolic flux.
doi_str_mv 10.1371/journal.pcbi.1002612
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313184647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A299061953</galeid><doaj_id>oai_doaj_org_article_a581ae6e26e84e8abd03716717442faa</doaj_id><sourcerecordid>A299061953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-49df87677cba03ccc0811b4764a3ee5e748d24c820b476365694b5b1ce1235943</originalsourceid><addsrcrecordid>eNqVkl2L1DAUhoso7of-A9GCN3oxY76atDfCsvgxsCisCt6FND3tZGibMWkXZ3-9Z6bdZUe8kVwkOXnOm5M3J0leULKkXNF3Gz-G3rTLrS3dkhLCJGWPklOaZXyheJY_frA-Sc5i3BCCy0I-TU4Yy4mSipwmP6_N4DzqpNA3rgcIrm9SX-P2dtdBatrWxwGjNg3QjO2BTod18GOzTiP8GqG3kMKNb8fDkUGtXXTxWfKkNm2E5_N8nvz4-OH75efF1ddPq8uLq4WVnA8LUVR1jqUoWxrCrbUkp7QUSgrDATJQIq-YsDkj-yCXmSxEmZXUAmU8KwQ_T15NulssVM-mRE05jlxIoZBYTUTlzUZvg-tM2GlvnD4EfGi0CYOzLWiT5dSABCYhF5CbsiJotVRUCcFqY1Dr_XzbWHZQWeiHYNoj0eOT3q11428050U2lftmFggevYuD7ly00LamBz9i3YQpwvGXJKKv_0L__brlRDUGH-D62uO9FkcFnbO-h9ph_IIVBZG0yDgmvD1KQGaA30Njxhj16tv1f7BfjlkxsTb4GAPU965Qovcde1e-3nesnjsW014-dPQ-6a5F-R_cmeg-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313184647</pqid></control><display><type>article</type><title>Rational engineering of enzyme allosteric regulation through sequence evolution analysis</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Yang, Jae-Seong ; Seo, Sang Woo ; Jang, Sungho ; Jung, Gyoo Yeol ; Kim, Sanguk</creator><contributor>Teichmann, Sarah A.</contributor><creatorcontrib>Yang, Jae-Seong ; Seo, Sang Woo ; Jang, Sungho ; Jung, Gyoo Yeol ; Kim, Sanguk ; Teichmann, Sarah A.</creatorcontrib><description>Control of enzyme allosteric regulation is required to drive metabolic flux toward desired levels. Although the three-dimensional (3D) structures of many enzyme-ligand complexes are available, it is still difficult to rationally engineer an allosterically regulatable enzyme without decreasing its catalytic activity. Here, we describe an effective strategy to deregulate the allosteric inhibition of enzymes based on the molecular evolution and physicochemical characteristics of allosteric ligand-binding sites. We found that allosteric sites are evolutionarily variable and comprised of more hydrophobic residues than catalytic sites. We applied our findings to design mutations in selected target residues that deregulate the allosteric activity of fructose-1,6-bisphosphatase (FBPase). Specifically, charged amino acids at less conserved positions were substituted with hydrophobic or neutral amino acids with similar sizes. The engineered proteins successfully diminished the allosteric inhibition of E. coli FBPase without affecting its catalytic efficiency. We expect that our method will aid the rational design of enzyme allosteric regulation strategies and facilitate the control of metabolic flux.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1002612</identifier><identifier>PMID: 22807670</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine Monophosphate - chemistry ; Adenosine Monophosphate - metabolism ; Allosteric proteins ; Allosteric Regulation ; Amino Acid Sequence ; Binding sites ; Biology ; Catalytic Domain ; Computational Biology ; DNA sequencing ; Engineering ; Enzymes ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Evolution, Molecular ; Fructose-Bisphosphatase - chemistry ; Fructose-Bisphosphatase - genetics ; Fructose-Bisphosphatase - metabolism ; Genetic engineering ; Genetic regulation ; Glucose-6-Phosphate - chemistry ; Glucose-6-Phosphate - metabolism ; Hydrophobic and Hydrophilic Interactions ; Kinases ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nucleotide sequencing ; Physiological aspects ; Protein Engineering - methods ; Proteins ; Sequence Analysis, Protein - methods</subject><ispartof>PLoS computational biology, 2012-07, Vol.8 (7), p.e1002612-e1002612</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Yang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Yang J-S, Seo SW, Jang S, Jung GY, Kim S (2012) Rational Engineering of Enzyme Allosteric Regulation through Sequence Evolution Analysis. PLoS Comput Biol 8(7): e1002612. doi:10.1371/journal.pcbi.1002612</rights><rights>Yang et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-49df87677cba03ccc0811b4764a3ee5e748d24c820b476365694b5b1ce1235943</citedby><cites>FETCH-LOGICAL-c633t-49df87677cba03ccc0811b4764a3ee5e748d24c820b476365694b5b1ce1235943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1313184647/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1313184647?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25740,27911,27912,36999,37000,44577,53778,53780,74881</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22807670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Teichmann, Sarah A.</contributor><creatorcontrib>Yang, Jae-Seong</creatorcontrib><creatorcontrib>Seo, Sang Woo</creatorcontrib><creatorcontrib>Jang, Sungho</creatorcontrib><creatorcontrib>Jung, Gyoo Yeol</creatorcontrib><creatorcontrib>Kim, Sanguk</creatorcontrib><title>Rational engineering of enzyme allosteric regulation through sequence evolution analysis</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Control of enzyme allosteric regulation is required to drive metabolic flux toward desired levels. Although the three-dimensional (3D) structures of many enzyme-ligand complexes are available, it is still difficult to rationally engineer an allosterically regulatable enzyme without decreasing its catalytic activity. Here, we describe an effective strategy to deregulate the allosteric inhibition of enzymes based on the molecular evolution and physicochemical characteristics of allosteric ligand-binding sites. We found that allosteric sites are evolutionarily variable and comprised of more hydrophobic residues than catalytic sites. We applied our findings to design mutations in selected target residues that deregulate the allosteric activity of fructose-1,6-bisphosphatase (FBPase). Specifically, charged amino acids at less conserved positions were substituted with hydrophobic or neutral amino acids with similar sizes. The engineered proteins successfully diminished the allosteric inhibition of E. coli FBPase without affecting its catalytic efficiency. We expect that our method will aid the rational design of enzyme allosteric regulation strategies and facilitate the control of metabolic flux.</description><subject>Adenosine Monophosphate - chemistry</subject><subject>Adenosine Monophosphate - metabolism</subject><subject>Allosteric proteins</subject><subject>Allosteric Regulation</subject><subject>Amino Acid Sequence</subject><subject>Binding sites</subject><subject>Biology</subject><subject>Catalytic Domain</subject><subject>Computational Biology</subject><subject>DNA sequencing</subject><subject>Engineering</subject><subject>Enzymes</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Evolution, Molecular</subject><subject>Fructose-Bisphosphatase - chemistry</subject><subject>Fructose-Bisphosphatase - genetics</subject><subject>Fructose-Bisphosphatase - metabolism</subject><subject>Genetic engineering</subject><subject>Genetic regulation</subject><subject>Glucose-6-Phosphate - chemistry</subject><subject>Glucose-6-Phosphate - metabolism</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Kinases</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Nucleotide sequencing</subject><subject>Physiological aspects</subject><subject>Protein Engineering - methods</subject><subject>Proteins</subject><subject>Sequence Analysis, Protein - methods</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl2L1DAUhoso7of-A9GCN3oxY76atDfCsvgxsCisCt6FND3tZGibMWkXZ3-9Z6bdZUe8kVwkOXnOm5M3J0leULKkXNF3Gz-G3rTLrS3dkhLCJGWPklOaZXyheJY_frA-Sc5i3BCCy0I-TU4Yy4mSipwmP6_N4DzqpNA3rgcIrm9SX-P2dtdBatrWxwGjNg3QjO2BTod18GOzTiP8GqG3kMKNb8fDkUGtXXTxWfKkNm2E5_N8nvz4-OH75efF1ddPq8uLq4WVnA8LUVR1jqUoWxrCrbUkp7QUSgrDATJQIq-YsDkj-yCXmSxEmZXUAmU8KwQ_T15NulssVM-mRE05jlxIoZBYTUTlzUZvg-tM2GlvnD4EfGi0CYOzLWiT5dSABCYhF5CbsiJotVRUCcFqY1Dr_XzbWHZQWeiHYNoj0eOT3q11428050U2lftmFggevYuD7ly00LamBz9i3YQpwvGXJKKv_0L__brlRDUGH-D62uO9FkcFnbO-h9ph_IIVBZG0yDgmvD1KQGaA30Njxhj16tv1f7BfjlkxsTb4GAPU965Qovcde1e-3nesnjsW014-dPQ-6a5F-R_cmeg-</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Yang, Jae-Seong</creator><creator>Seo, Sang Woo</creator><creator>Jang, Sungho</creator><creator>Jung, Gyoo Yeol</creator><creator>Kim, Sanguk</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120701</creationdate><title>Rational engineering of enzyme allosteric regulation through sequence evolution analysis</title><author>Yang, Jae-Seong ; Seo, Sang Woo ; Jang, Sungho ; Jung, Gyoo Yeol ; Kim, Sanguk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-49df87677cba03ccc0811b4764a3ee5e748d24c820b476365694b5b1ce1235943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenosine Monophosphate - chemistry</topic><topic>Adenosine Monophosphate - metabolism</topic><topic>Allosteric proteins</topic><topic>Allosteric Regulation</topic><topic>Amino Acid Sequence</topic><topic>Binding sites</topic><topic>Biology</topic><topic>Catalytic Domain</topic><topic>Computational Biology</topic><topic>DNA sequencing</topic><topic>Engineering</topic><topic>Enzymes</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Evolution, Molecular</topic><topic>Fructose-Bisphosphatase - chemistry</topic><topic>Fructose-Bisphosphatase - genetics</topic><topic>Fructose-Bisphosphatase - metabolism</topic><topic>Genetic engineering</topic><topic>Genetic regulation</topic><topic>Glucose-6-Phosphate - chemistry</topic><topic>Glucose-6-Phosphate - metabolism</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Kinases</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Nucleotide sequencing</topic><topic>Physiological aspects</topic><topic>Protein Engineering - methods</topic><topic>Proteins</topic><topic>Sequence Analysis, Protein - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jae-Seong</creatorcontrib><creatorcontrib>Seo, Sang Woo</creatorcontrib><creatorcontrib>Jang, Sungho</creatorcontrib><creatorcontrib>Jung, Gyoo Yeol</creatorcontrib><creatorcontrib>Kim, Sanguk</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jae-Seong</au><au>Seo, Sang Woo</au><au>Jang, Sungho</au><au>Jung, Gyoo Yeol</au><au>Kim, Sanguk</au><au>Teichmann, Sarah A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational engineering of enzyme allosteric regulation through sequence evolution analysis</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>8</volume><issue>7</issue><spage>e1002612</spage><epage>e1002612</epage><pages>e1002612-e1002612</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Control of enzyme allosteric regulation is required to drive metabolic flux toward desired levels. Although the three-dimensional (3D) structures of many enzyme-ligand complexes are available, it is still difficult to rationally engineer an allosterically regulatable enzyme without decreasing its catalytic activity. Here, we describe an effective strategy to deregulate the allosteric inhibition of enzymes based on the molecular evolution and physicochemical characteristics of allosteric ligand-binding sites. We found that allosteric sites are evolutionarily variable and comprised of more hydrophobic residues than catalytic sites. We applied our findings to design mutations in selected target residues that deregulate the allosteric activity of fructose-1,6-bisphosphatase (FBPase). Specifically, charged amino acids at less conserved positions were substituted with hydrophobic or neutral amino acids with similar sizes. The engineered proteins successfully diminished the allosteric inhibition of E. coli FBPase without affecting its catalytic efficiency. We expect that our method will aid the rational design of enzyme allosteric regulation strategies and facilitate the control of metabolic flux.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22807670</pmid><doi>10.1371/journal.pcbi.1002612</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2012-07, Vol.8 (7), p.e1002612-e1002612
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1313184647
source Publicly Available Content Database; PubMed Central
subjects Adenosine Monophosphate - chemistry
Adenosine Monophosphate - metabolism
Allosteric proteins
Allosteric Regulation
Amino Acid Sequence
Binding sites
Biology
Catalytic Domain
Computational Biology
DNA sequencing
Engineering
Enzymes
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Evolution, Molecular
Fructose-Bisphosphatase - chemistry
Fructose-Bisphosphatase - genetics
Fructose-Bisphosphatase - metabolism
Genetic engineering
Genetic regulation
Glucose-6-Phosphate - chemistry
Glucose-6-Phosphate - metabolism
Hydrophobic and Hydrophilic Interactions
Kinases
Models, Molecular
Molecular Sequence Data
Mutation
Nucleotide sequencing
Physiological aspects
Protein Engineering - methods
Proteins
Sequence Analysis, Protein - methods
title Rational engineering of enzyme allosteric regulation through sequence evolution analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20engineering%20of%20enzyme%20allosteric%20regulation%20through%20sequence%20evolution%20analysis&rft.jtitle=PLoS%20computational%20biology&rft.au=Yang,%20Jae-Seong&rft.date=2012-07-01&rft.volume=8&rft.issue=7&rft.spage=e1002612&rft.epage=e1002612&rft.pages=e1002612-e1002612&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1002612&rft_dat=%3Cgale_plos_%3EA299061953%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c633t-49df87677cba03ccc0811b4764a3ee5e748d24c820b476365694b5b1ce1235943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1313184647&rft_id=info:pmid/22807670&rft_galeid=A299061953&rfr_iscdi=true