Loading…

A mathematical model of CR3/TLR2 crosstalk in the context of Francisella tularensis infection

Complement Receptor 3 (CR3) and Toll-like Receptor 2 (TLR2) are pattern recognition receptors expressed on the surface of human macrophages. Although these receptors are essential components for recognition by the innate immune system, pathogen coordinated crosstalk between them can suppress the pro...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2012-11, Vol.8 (11), p.e1002757-e1002757
Main Authors: Leander, Rachel, Dai, Shipan, Schlesinger, Larry S, Friedman, Avner
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c661t-917f86169cf4770ce970c7598add08c140aa41a2c5c6f5a69405391c98d772633
cites cdi_FETCH-LOGICAL-c661t-917f86169cf4770ce970c7598add08c140aa41a2c5c6f5a69405391c98d772633
container_end_page e1002757
container_issue 11
container_start_page e1002757
container_title PLoS computational biology
container_volume 8
creator Leander, Rachel
Dai, Shipan
Schlesinger, Larry S
Friedman, Avner
description Complement Receptor 3 (CR3) and Toll-like Receptor 2 (TLR2) are pattern recognition receptors expressed on the surface of human macrophages. Although these receptors are essential components for recognition by the innate immune system, pathogen coordinated crosstalk between them can suppress the production of protective cytokines and promote infection. Recognition of the virulent Schu S4 strain of the intracellular pathogen Francisella tularensis by host macrophages involves CR3/TLR2 crosstalk. Although experimental data provide evidence that Lyn kinase and PI3K are essential components of the CR3 pathway that influences TLR2 activity, additional responsible upstream signaling components remain unknown. In this paper we construct a mathematical model of CR3 and TLR2 signaling in response to F. tularensis. After demonstrating that the model is consistent with experimental results we perform numerical simulations to evaluate the contributions that Akt and Ras-GAP make to ERK inhibition. The model confirms that phagocytosis-associated changes in the composition of the cell membrane can inhibit ERK activity and predicts that Akt and Ras-GAP synergize to inhibit ERK.
doi_str_mv 10.1371/journal.pcbi.1002757
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313185425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A312014912</galeid><doaj_id>oai_doaj_org_article_66547be67da0495b9c21c01f3ec8d6cb</doaj_id><sourcerecordid>A312014912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-917f86169cf4770ce970c7598add08c140aa41a2c5c6f5a69405391c98d772633</originalsourceid><addsrcrecordid>eNqVkl2L1DAUhoso7of-A9GCN-vFzOY0X82NMAyuDgwK43opIZOmsxnTZkxa0X9vutNdtrI3UkhD8pw3ed-cLHsFaA6Yw-Xe96FVbn7QWzsHhApO-ZPsFCjFM45p-fTB_CQ7i3GPUJoK9jw7KTBgjBmcZt8XeaO6G5MGq5XLG18Zl_s6X27w5fV6U-Q6-Bg75X7kts0TmWvfduZ3N0BXQbXaRuOcyrveqWDaaGMCa6M769sX2bNauWhejv_z7NvVh-vlp9n6y8fVcrGeacagmwngdcmACV0TzpE2Ig2cilJVFSo1EKQUAVVoqllNFRMEUSxAi7LivGAYn2dvjroH56Mck4kSkk0oKSloIlZHovJqLw_BNir8kV5Zebvgw06qkCJwRjJGCd8axiuFiKBboQvQCGpsdFkxvU1a78fT-m1jKm3aLig3EZ3utPZG7vwviUnJSjpc92IUCP5nb2InGxv1kGJrfJ_uDSTZYwzzhL79B33c3UjtVDKQ4vfpXD2IygWGAgERUCRq_giVvso0Nr2qqW1anxS8mxSML79TfYxy9XXzH-znKUuO7G1vBVPfZwdIDs19Z1IOzS3H5k5lrx_mfl901834L8Cc8ug</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313185425</pqid></control><display><type>article</type><title>A mathematical model of CR3/TLR2 crosstalk in the context of Francisella tularensis infection</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><creator>Leander, Rachel ; Dai, Shipan ; Schlesinger, Larry S ; Friedman, Avner</creator><contributor>De Boer, Rob J.</contributor><creatorcontrib>Leander, Rachel ; Dai, Shipan ; Schlesinger, Larry S ; Friedman, Avner ; De Boer, Rob J.</creatorcontrib><description>Complement Receptor 3 (CR3) and Toll-like Receptor 2 (TLR2) are pattern recognition receptors expressed on the surface of human macrophages. Although these receptors are essential components for recognition by the innate immune system, pathogen coordinated crosstalk between them can suppress the production of protective cytokines and promote infection. Recognition of the virulent Schu S4 strain of the intracellular pathogen Francisella tularensis by host macrophages involves CR3/TLR2 crosstalk. Although experimental data provide evidence that Lyn kinase and PI3K are essential components of the CR3 pathway that influences TLR2 activity, additional responsible upstream signaling components remain unknown. In this paper we construct a mathematical model of CR3 and TLR2 signaling in response to F. tularensis. After demonstrating that the model is consistent with experimental results we perform numerical simulations to evaluate the contributions that Akt and Ras-GAP make to ERK inhibition. The model confirms that phagocytosis-associated changes in the composition of the cell membrane can inhibit ERK activity and predicts that Akt and Ras-GAP synergize to inhibit ERK.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1002757</identifier><identifier>PMID: 23133361</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bacteria ; Bacterial infections ; Biology ; Computer Science ; Computer Simulation ; Development and progression ; Experiments ; Feedback ; Francisella tularensis ; Francisella tularensis - metabolism ; Health aspects ; Host-Pathogen Interactions - immunology ; Host-Pathogen Interactions - physiology ; Humans ; Hypotheses ; Infections ; Kinases ; Ligands ; Macrophage-1 Antigen - metabolism ; Macrophages - metabolism ; Macrophages - microbiology ; Mathematical models ; Medicine ; Models, Biological ; Pattern recognition ; Phagocytosis - physiology ; Phosphorylation ; Physiological aspects ; Proteins ; Signal Transduction - physiology ; Toll-Like Receptor 2 - metabolism ; Toll-like receptors ; Tularemia - immunology ; Tularemia - metabolism ; Tularemia - microbiology ; Virulence (Microbiology)</subject><ispartof>PLoS computational biology, 2012-11, Vol.8 (11), p.e1002757-e1002757</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Leander et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Leander R, Dai S, Schlesinger LS, Friedman A (2012) A Mathematical Model of CR3/TLR2 Crosstalk in the Context of Francisella tularensis Infection. PLoS Comput Biol 8(11): e1002757. doi:10.1371/journal.pcbi.1002757</rights><rights>2012 Leander et al 2012 Leander et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-917f86169cf4770ce970c7598add08c140aa41a2c5c6f5a69405391c98d772633</citedby><cites>FETCH-LOGICAL-c661t-917f86169cf4770ce970c7598add08c140aa41a2c5c6f5a69405391c98d772633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1313185425/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1313185425?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23133361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>De Boer, Rob J.</contributor><creatorcontrib>Leander, Rachel</creatorcontrib><creatorcontrib>Dai, Shipan</creatorcontrib><creatorcontrib>Schlesinger, Larry S</creatorcontrib><creatorcontrib>Friedman, Avner</creatorcontrib><title>A mathematical model of CR3/TLR2 crosstalk in the context of Francisella tularensis infection</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Complement Receptor 3 (CR3) and Toll-like Receptor 2 (TLR2) are pattern recognition receptors expressed on the surface of human macrophages. Although these receptors are essential components for recognition by the innate immune system, pathogen coordinated crosstalk between them can suppress the production of protective cytokines and promote infection. Recognition of the virulent Schu S4 strain of the intracellular pathogen Francisella tularensis by host macrophages involves CR3/TLR2 crosstalk. Although experimental data provide evidence that Lyn kinase and PI3K are essential components of the CR3 pathway that influences TLR2 activity, additional responsible upstream signaling components remain unknown. In this paper we construct a mathematical model of CR3 and TLR2 signaling in response to F. tularensis. After demonstrating that the model is consistent with experimental results we perform numerical simulations to evaluate the contributions that Akt and Ras-GAP make to ERK inhibition. The model confirms that phagocytosis-associated changes in the composition of the cell membrane can inhibit ERK activity and predicts that Akt and Ras-GAP synergize to inhibit ERK.</description><subject>Bacteria</subject><subject>Bacterial infections</subject><subject>Biology</subject><subject>Computer Science</subject><subject>Computer Simulation</subject><subject>Development and progression</subject><subject>Experiments</subject><subject>Feedback</subject><subject>Francisella tularensis</subject><subject>Francisella tularensis - metabolism</subject><subject>Health aspects</subject><subject>Host-Pathogen Interactions - immunology</subject><subject>Host-Pathogen Interactions - physiology</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Infections</subject><subject>Kinases</subject><subject>Ligands</subject><subject>Macrophage-1 Antigen - metabolism</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - microbiology</subject><subject>Mathematical models</subject><subject>Medicine</subject><subject>Models, Biological</subject><subject>Pattern recognition</subject><subject>Phagocytosis - physiology</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Signal Transduction - physiology</subject><subject>Toll-Like Receptor 2 - metabolism</subject><subject>Toll-like receptors</subject><subject>Tularemia - immunology</subject><subject>Tularemia - metabolism</subject><subject>Tularemia - microbiology</subject><subject>Virulence (Microbiology)</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl2L1DAUhoso7of-A9GCN-vFzOY0X82NMAyuDgwK43opIZOmsxnTZkxa0X9vutNdtrI3UkhD8pw3ed-cLHsFaA6Yw-Xe96FVbn7QWzsHhApO-ZPsFCjFM45p-fTB_CQ7i3GPUJoK9jw7KTBgjBmcZt8XeaO6G5MGq5XLG18Zl_s6X27w5fV6U-Q6-Bg75X7kts0TmWvfduZ3N0BXQbXaRuOcyrveqWDaaGMCa6M769sX2bNauWhejv_z7NvVh-vlp9n6y8fVcrGeacagmwngdcmACV0TzpE2Ig2cilJVFSo1EKQUAVVoqllNFRMEUSxAi7LivGAYn2dvjroH56Mck4kSkk0oKSloIlZHovJqLw_BNir8kV5Zebvgw06qkCJwRjJGCd8axiuFiKBboQvQCGpsdFkxvU1a78fT-m1jKm3aLig3EZ3utPZG7vwviUnJSjpc92IUCP5nb2InGxv1kGJrfJ_uDSTZYwzzhL79B33c3UjtVDKQ4vfpXD2IygWGAgERUCRq_giVvso0Nr2qqW1anxS8mxSML79TfYxy9XXzH-znKUuO7G1vBVPfZwdIDs19Z1IOzS3H5k5lrx_mfl901834L8Cc8ug</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Leander, Rachel</creator><creator>Dai, Shipan</creator><creator>Schlesinger, Larry S</creator><creator>Friedman, Avner</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121101</creationdate><title>A mathematical model of CR3/TLR2 crosstalk in the context of Francisella tularensis infection</title><author>Leander, Rachel ; Dai, Shipan ; Schlesinger, Larry S ; Friedman, Avner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-917f86169cf4770ce970c7598add08c140aa41a2c5c6f5a69405391c98d772633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bacteria</topic><topic>Bacterial infections</topic><topic>Biology</topic><topic>Computer Science</topic><topic>Computer Simulation</topic><topic>Development and progression</topic><topic>Experiments</topic><topic>Feedback</topic><topic>Francisella tularensis</topic><topic>Francisella tularensis - metabolism</topic><topic>Health aspects</topic><topic>Host-Pathogen Interactions - immunology</topic><topic>Host-Pathogen Interactions - physiology</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Infections</topic><topic>Kinases</topic><topic>Ligands</topic><topic>Macrophage-1 Antigen - metabolism</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - microbiology</topic><topic>Mathematical models</topic><topic>Medicine</topic><topic>Models, Biological</topic><topic>Pattern recognition</topic><topic>Phagocytosis - physiology</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Signal Transduction - physiology</topic><topic>Toll-Like Receptor 2 - metabolism</topic><topic>Toll-like receptors</topic><topic>Tularemia - immunology</topic><topic>Tularemia - metabolism</topic><topic>Tularemia - microbiology</topic><topic>Virulence (Microbiology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leander, Rachel</creatorcontrib><creatorcontrib>Dai, Shipan</creatorcontrib><creatorcontrib>Schlesinger, Larry S</creatorcontrib><creatorcontrib>Friedman, Avner</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leander, Rachel</au><au>Dai, Shipan</au><au>Schlesinger, Larry S</au><au>Friedman, Avner</au><au>De Boer, Rob J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mathematical model of CR3/TLR2 crosstalk in the context of Francisella tularensis infection</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>8</volume><issue>11</issue><spage>e1002757</spage><epage>e1002757</epage><pages>e1002757-e1002757</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Complement Receptor 3 (CR3) and Toll-like Receptor 2 (TLR2) are pattern recognition receptors expressed on the surface of human macrophages. Although these receptors are essential components for recognition by the innate immune system, pathogen coordinated crosstalk between them can suppress the production of protective cytokines and promote infection. Recognition of the virulent Schu S4 strain of the intracellular pathogen Francisella tularensis by host macrophages involves CR3/TLR2 crosstalk. Although experimental data provide evidence that Lyn kinase and PI3K are essential components of the CR3 pathway that influences TLR2 activity, additional responsible upstream signaling components remain unknown. In this paper we construct a mathematical model of CR3 and TLR2 signaling in response to F. tularensis. After demonstrating that the model is consistent with experimental results we perform numerical simulations to evaluate the contributions that Akt and Ras-GAP make to ERK inhibition. The model confirms that phagocytosis-associated changes in the composition of the cell membrane can inhibit ERK activity and predicts that Akt and Ras-GAP synergize to inhibit ERK.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23133361</pmid><doi>10.1371/journal.pcbi.1002757</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2012-11, Vol.8 (11), p.e1002757-e1002757
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1313185425
source ProQuest - Publicly Available Content Database; PubMed Central
subjects Bacteria
Bacterial infections
Biology
Computer Science
Computer Simulation
Development and progression
Experiments
Feedback
Francisella tularensis
Francisella tularensis - metabolism
Health aspects
Host-Pathogen Interactions - immunology
Host-Pathogen Interactions - physiology
Humans
Hypotheses
Infections
Kinases
Ligands
Macrophage-1 Antigen - metabolism
Macrophages - metabolism
Macrophages - microbiology
Mathematical models
Medicine
Models, Biological
Pattern recognition
Phagocytosis - physiology
Phosphorylation
Physiological aspects
Proteins
Signal Transduction - physiology
Toll-Like Receptor 2 - metabolism
Toll-like receptors
Tularemia - immunology
Tularemia - metabolism
Tularemia - microbiology
Virulence (Microbiology)
title A mathematical model of CR3/TLR2 crosstalk in the context of Francisella tularensis infection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A15%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mathematical%20model%20of%20CR3/TLR2%20crosstalk%20in%20the%20context%20of%20Francisella%20tularensis%20infection&rft.jtitle=PLoS%20computational%20biology&rft.au=Leander,%20Rachel&rft.date=2012-11-01&rft.volume=8&rft.issue=11&rft.spage=e1002757&rft.epage=e1002757&rft.pages=e1002757-e1002757&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1002757&rft_dat=%3Cgale_plos_%3EA312014912%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c661t-917f86169cf4770ce970c7598add08c140aa41a2c5c6f5a69405391c98d772633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1313185425&rft_id=info:pmid/23133361&rft_galeid=A312014912&rfr_iscdi=true