Loading…
A mathematical model of CR3/TLR2 crosstalk in the context of Francisella tularensis infection
Complement Receptor 3 (CR3) and Toll-like Receptor 2 (TLR2) are pattern recognition receptors expressed on the surface of human macrophages. Although these receptors are essential components for recognition by the innate immune system, pathogen coordinated crosstalk between them can suppress the pro...
Saved in:
Published in: | PLoS computational biology 2012-11, Vol.8 (11), p.e1002757-e1002757 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c661t-917f86169cf4770ce970c7598add08c140aa41a2c5c6f5a69405391c98d772633 |
---|---|
cites | cdi_FETCH-LOGICAL-c661t-917f86169cf4770ce970c7598add08c140aa41a2c5c6f5a69405391c98d772633 |
container_end_page | e1002757 |
container_issue | 11 |
container_start_page | e1002757 |
container_title | PLoS computational biology |
container_volume | 8 |
creator | Leander, Rachel Dai, Shipan Schlesinger, Larry S Friedman, Avner |
description | Complement Receptor 3 (CR3) and Toll-like Receptor 2 (TLR2) are pattern recognition receptors expressed on the surface of human macrophages. Although these receptors are essential components for recognition by the innate immune system, pathogen coordinated crosstalk between them can suppress the production of protective cytokines and promote infection. Recognition of the virulent Schu S4 strain of the intracellular pathogen Francisella tularensis by host macrophages involves CR3/TLR2 crosstalk. Although experimental data provide evidence that Lyn kinase and PI3K are essential components of the CR3 pathway that influences TLR2 activity, additional responsible upstream signaling components remain unknown. In this paper we construct a mathematical model of CR3 and TLR2 signaling in response to F. tularensis. After demonstrating that the model is consistent with experimental results we perform numerical simulations to evaluate the contributions that Akt and Ras-GAP make to ERK inhibition. The model confirms that phagocytosis-associated changes in the composition of the cell membrane can inhibit ERK activity and predicts that Akt and Ras-GAP synergize to inhibit ERK. |
doi_str_mv | 10.1371/journal.pcbi.1002757 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313185425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A312014912</galeid><doaj_id>oai_doaj_org_article_66547be67da0495b9c21c01f3ec8d6cb</doaj_id><sourcerecordid>A312014912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-917f86169cf4770ce970c7598add08c140aa41a2c5c6f5a69405391c98d772633</originalsourceid><addsrcrecordid>eNqVkl2L1DAUhoso7of-A9GCN-vFzOY0X82NMAyuDgwK43opIZOmsxnTZkxa0X9vutNdtrI3UkhD8pw3ed-cLHsFaA6Yw-Xe96FVbn7QWzsHhApO-ZPsFCjFM45p-fTB_CQ7i3GPUJoK9jw7KTBgjBmcZt8XeaO6G5MGq5XLG18Zl_s6X27w5fV6U-Q6-Bg75X7kts0TmWvfduZ3N0BXQbXaRuOcyrveqWDaaGMCa6M769sX2bNauWhejv_z7NvVh-vlp9n6y8fVcrGeacagmwngdcmACV0TzpE2Ig2cilJVFSo1EKQUAVVoqllNFRMEUSxAi7LivGAYn2dvjroH56Mck4kSkk0oKSloIlZHovJqLw_BNir8kV5Zebvgw06qkCJwRjJGCd8axiuFiKBboQvQCGpsdFkxvU1a78fT-m1jKm3aLig3EZ3utPZG7vwviUnJSjpc92IUCP5nb2InGxv1kGJrfJ_uDSTZYwzzhL79B33c3UjtVDKQ4vfpXD2IygWGAgERUCRq_giVvso0Nr2qqW1anxS8mxSML79TfYxy9XXzH-znKUuO7G1vBVPfZwdIDs19Z1IOzS3H5k5lrx_mfl901834L8Cc8ug</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313185425</pqid></control><display><type>article</type><title>A mathematical model of CR3/TLR2 crosstalk in the context of Francisella tularensis infection</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><creator>Leander, Rachel ; Dai, Shipan ; Schlesinger, Larry S ; Friedman, Avner</creator><contributor>De Boer, Rob J.</contributor><creatorcontrib>Leander, Rachel ; Dai, Shipan ; Schlesinger, Larry S ; Friedman, Avner ; De Boer, Rob J.</creatorcontrib><description>Complement Receptor 3 (CR3) and Toll-like Receptor 2 (TLR2) are pattern recognition receptors expressed on the surface of human macrophages. Although these receptors are essential components for recognition by the innate immune system, pathogen coordinated crosstalk between them can suppress the production of protective cytokines and promote infection. Recognition of the virulent Schu S4 strain of the intracellular pathogen Francisella tularensis by host macrophages involves CR3/TLR2 crosstalk. Although experimental data provide evidence that Lyn kinase and PI3K are essential components of the CR3 pathway that influences TLR2 activity, additional responsible upstream signaling components remain unknown. In this paper we construct a mathematical model of CR3 and TLR2 signaling in response to F. tularensis. After demonstrating that the model is consistent with experimental results we perform numerical simulations to evaluate the contributions that Akt and Ras-GAP make to ERK inhibition. The model confirms that phagocytosis-associated changes in the composition of the cell membrane can inhibit ERK activity and predicts that Akt and Ras-GAP synergize to inhibit ERK.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1002757</identifier><identifier>PMID: 23133361</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bacteria ; Bacterial infections ; Biology ; Computer Science ; Computer Simulation ; Development and progression ; Experiments ; Feedback ; Francisella tularensis ; Francisella tularensis - metabolism ; Health aspects ; Host-Pathogen Interactions - immunology ; Host-Pathogen Interactions - physiology ; Humans ; Hypotheses ; Infections ; Kinases ; Ligands ; Macrophage-1 Antigen - metabolism ; Macrophages - metabolism ; Macrophages - microbiology ; Mathematical models ; Medicine ; Models, Biological ; Pattern recognition ; Phagocytosis - physiology ; Phosphorylation ; Physiological aspects ; Proteins ; Signal Transduction - physiology ; Toll-Like Receptor 2 - metabolism ; Toll-like receptors ; Tularemia - immunology ; Tularemia - metabolism ; Tularemia - microbiology ; Virulence (Microbiology)</subject><ispartof>PLoS computational biology, 2012-11, Vol.8 (11), p.e1002757-e1002757</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Leander et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Leander R, Dai S, Schlesinger LS, Friedman A (2012) A Mathematical Model of CR3/TLR2 Crosstalk in the Context of Francisella tularensis Infection. PLoS Comput Biol 8(11): e1002757. doi:10.1371/journal.pcbi.1002757</rights><rights>2012 Leander et al 2012 Leander et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-917f86169cf4770ce970c7598add08c140aa41a2c5c6f5a69405391c98d772633</citedby><cites>FETCH-LOGICAL-c661t-917f86169cf4770ce970c7598add08c140aa41a2c5c6f5a69405391c98d772633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1313185425/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1313185425?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23133361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>De Boer, Rob J.</contributor><creatorcontrib>Leander, Rachel</creatorcontrib><creatorcontrib>Dai, Shipan</creatorcontrib><creatorcontrib>Schlesinger, Larry S</creatorcontrib><creatorcontrib>Friedman, Avner</creatorcontrib><title>A mathematical model of CR3/TLR2 crosstalk in the context of Francisella tularensis infection</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Complement Receptor 3 (CR3) and Toll-like Receptor 2 (TLR2) are pattern recognition receptors expressed on the surface of human macrophages. Although these receptors are essential components for recognition by the innate immune system, pathogen coordinated crosstalk between them can suppress the production of protective cytokines and promote infection. Recognition of the virulent Schu S4 strain of the intracellular pathogen Francisella tularensis by host macrophages involves CR3/TLR2 crosstalk. Although experimental data provide evidence that Lyn kinase and PI3K are essential components of the CR3 pathway that influences TLR2 activity, additional responsible upstream signaling components remain unknown. In this paper we construct a mathematical model of CR3 and TLR2 signaling in response to F. tularensis. After demonstrating that the model is consistent with experimental results we perform numerical simulations to evaluate the contributions that Akt and Ras-GAP make to ERK inhibition. The model confirms that phagocytosis-associated changes in the composition of the cell membrane can inhibit ERK activity and predicts that Akt and Ras-GAP synergize to inhibit ERK.</description><subject>Bacteria</subject><subject>Bacterial infections</subject><subject>Biology</subject><subject>Computer Science</subject><subject>Computer Simulation</subject><subject>Development and progression</subject><subject>Experiments</subject><subject>Feedback</subject><subject>Francisella tularensis</subject><subject>Francisella tularensis - metabolism</subject><subject>Health aspects</subject><subject>Host-Pathogen Interactions - immunology</subject><subject>Host-Pathogen Interactions - physiology</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Infections</subject><subject>Kinases</subject><subject>Ligands</subject><subject>Macrophage-1 Antigen - metabolism</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - microbiology</subject><subject>Mathematical models</subject><subject>Medicine</subject><subject>Models, Biological</subject><subject>Pattern recognition</subject><subject>Phagocytosis - physiology</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Signal Transduction - physiology</subject><subject>Toll-Like Receptor 2 - metabolism</subject><subject>Toll-like receptors</subject><subject>Tularemia - immunology</subject><subject>Tularemia - metabolism</subject><subject>Tularemia - microbiology</subject><subject>Virulence (Microbiology)</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl2L1DAUhoso7of-A9GCN-vFzOY0X82NMAyuDgwK43opIZOmsxnTZkxa0X9vutNdtrI3UkhD8pw3ed-cLHsFaA6Yw-Xe96FVbn7QWzsHhApO-ZPsFCjFM45p-fTB_CQ7i3GPUJoK9jw7KTBgjBmcZt8XeaO6G5MGq5XLG18Zl_s6X27w5fV6U-Q6-Bg75X7kts0TmWvfduZ3N0BXQbXaRuOcyrveqWDaaGMCa6M769sX2bNauWhejv_z7NvVh-vlp9n6y8fVcrGeacagmwngdcmACV0TzpE2Ig2cilJVFSo1EKQUAVVoqllNFRMEUSxAi7LivGAYn2dvjroH56Mck4kSkk0oKSloIlZHovJqLw_BNir8kV5Zebvgw06qkCJwRjJGCd8axiuFiKBboQvQCGpsdFkxvU1a78fT-m1jKm3aLig3EZ3utPZG7vwviUnJSjpc92IUCP5nb2InGxv1kGJrfJ_uDSTZYwzzhL79B33c3UjtVDKQ4vfpXD2IygWGAgERUCRq_giVvso0Nr2qqW1anxS8mxSML79TfYxy9XXzH-znKUuO7G1vBVPfZwdIDs19Z1IOzS3H5k5lrx_mfl901834L8Cc8ug</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Leander, Rachel</creator><creator>Dai, Shipan</creator><creator>Schlesinger, Larry S</creator><creator>Friedman, Avner</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121101</creationdate><title>A mathematical model of CR3/TLR2 crosstalk in the context of Francisella tularensis infection</title><author>Leander, Rachel ; Dai, Shipan ; Schlesinger, Larry S ; Friedman, Avner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-917f86169cf4770ce970c7598add08c140aa41a2c5c6f5a69405391c98d772633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bacteria</topic><topic>Bacterial infections</topic><topic>Biology</topic><topic>Computer Science</topic><topic>Computer Simulation</topic><topic>Development and progression</topic><topic>Experiments</topic><topic>Feedback</topic><topic>Francisella tularensis</topic><topic>Francisella tularensis - metabolism</topic><topic>Health aspects</topic><topic>Host-Pathogen Interactions - immunology</topic><topic>Host-Pathogen Interactions - physiology</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Infections</topic><topic>Kinases</topic><topic>Ligands</topic><topic>Macrophage-1 Antigen - metabolism</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - microbiology</topic><topic>Mathematical models</topic><topic>Medicine</topic><topic>Models, Biological</topic><topic>Pattern recognition</topic><topic>Phagocytosis - physiology</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Signal Transduction - physiology</topic><topic>Toll-Like Receptor 2 - metabolism</topic><topic>Toll-like receptors</topic><topic>Tularemia - immunology</topic><topic>Tularemia - metabolism</topic><topic>Tularemia - microbiology</topic><topic>Virulence (Microbiology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leander, Rachel</creatorcontrib><creatorcontrib>Dai, Shipan</creatorcontrib><creatorcontrib>Schlesinger, Larry S</creatorcontrib><creatorcontrib>Friedman, Avner</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leander, Rachel</au><au>Dai, Shipan</au><au>Schlesinger, Larry S</au><au>Friedman, Avner</au><au>De Boer, Rob J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mathematical model of CR3/TLR2 crosstalk in the context of Francisella tularensis infection</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>8</volume><issue>11</issue><spage>e1002757</spage><epage>e1002757</epage><pages>e1002757-e1002757</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Complement Receptor 3 (CR3) and Toll-like Receptor 2 (TLR2) are pattern recognition receptors expressed on the surface of human macrophages. Although these receptors are essential components for recognition by the innate immune system, pathogen coordinated crosstalk between them can suppress the production of protective cytokines and promote infection. Recognition of the virulent Schu S4 strain of the intracellular pathogen Francisella tularensis by host macrophages involves CR3/TLR2 crosstalk. Although experimental data provide evidence that Lyn kinase and PI3K are essential components of the CR3 pathway that influences TLR2 activity, additional responsible upstream signaling components remain unknown. In this paper we construct a mathematical model of CR3 and TLR2 signaling in response to F. tularensis. After demonstrating that the model is consistent with experimental results we perform numerical simulations to evaluate the contributions that Akt and Ras-GAP make to ERK inhibition. The model confirms that phagocytosis-associated changes in the composition of the cell membrane can inhibit ERK activity and predicts that Akt and Ras-GAP synergize to inhibit ERK.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23133361</pmid><doi>10.1371/journal.pcbi.1002757</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2012-11, Vol.8 (11), p.e1002757-e1002757 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1313185425 |
source | ProQuest - Publicly Available Content Database; PubMed Central |
subjects | Bacteria Bacterial infections Biology Computer Science Computer Simulation Development and progression Experiments Feedback Francisella tularensis Francisella tularensis - metabolism Health aspects Host-Pathogen Interactions - immunology Host-Pathogen Interactions - physiology Humans Hypotheses Infections Kinases Ligands Macrophage-1 Antigen - metabolism Macrophages - metabolism Macrophages - microbiology Mathematical models Medicine Models, Biological Pattern recognition Phagocytosis - physiology Phosphorylation Physiological aspects Proteins Signal Transduction - physiology Toll-Like Receptor 2 - metabolism Toll-like receptors Tularemia - immunology Tularemia - metabolism Tularemia - microbiology Virulence (Microbiology) |
title | A mathematical model of CR3/TLR2 crosstalk in the context of Francisella tularensis infection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A15%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mathematical%20model%20of%20CR3/TLR2%20crosstalk%20in%20the%20context%20of%20Francisella%20tularensis%20infection&rft.jtitle=PLoS%20computational%20biology&rft.au=Leander,%20Rachel&rft.date=2012-11-01&rft.volume=8&rft.issue=11&rft.spage=e1002757&rft.epage=e1002757&rft.pages=e1002757-e1002757&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1002757&rft_dat=%3Cgale_plos_%3EA312014912%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c661t-917f86169cf4770ce970c7598add08c140aa41a2c5c6f5a69405391c98d772633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1313185425&rft_id=info:pmid/23133361&rft_galeid=A312014912&rfr_iscdi=true |