Loading…
Optimality of human contour integration
For processing and segmenting visual scenes, the brain is required to combine a multitude of features and sensory channels. It is neither known if these complex tasks involve optimal integration of information, nor according to which objectives computations might be performed. Here, we investigate i...
Saved in:
Published in: | PLoS computational biology 2012-05, Vol.8 (5), p.e1002520-e1002520 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c633t-ca454563628157c26d0df9840dbe0db3f4b62770d8643ffb5bd79dc18b78ed53 |
---|---|
cites | cdi_FETCH-LOGICAL-c633t-ca454563628157c26d0df9840dbe0db3f4b62770d8643ffb5bd79dc18b78ed53 |
container_end_page | e1002520 |
container_issue | 5 |
container_start_page | e1002520 |
container_title | PLoS computational biology |
container_volume | 8 |
creator | Ernst, Udo A Mandon, Sunita Schinkel-Bielefeld, Nadja Neitzel, Simon D Kreiter, Andreas K Pawelzik, Klaus R |
description | For processing and segmenting visual scenes, the brain is required to combine a multitude of features and sensory channels. It is neither known if these complex tasks involve optimal integration of information, nor according to which objectives computations might be performed. Here, we investigate if optimal inference can explain contour integration in human subjects. We performed experiments where observers detected contours of curvilinearly aligned edge configurations embedded into randomly oriented distractors. The key feature of our framework is to use a generative process for creating the contours, for which it is possible to derive a class of ideal detection models. This allowed us to compare human detection for contours with different statistical properties to the corresponding ideal detection models for the same stimuli. We then subjected the detection models to realistic constraints and required them to reproduce human decisions for every stimulus as well as possible. By independently varying the four model parameters, we identify a single detection model which quantitatively captures all correlations of human decision behaviour for more than 2000 stimuli from 42 contour ensembles with greatly varying statistical properties. This model reveals specific interactions between edges closely matching independent findings from physiology and psychophysics. These interactions imply a statistics of contours for which edge stimuli are indeed optimally integrated by the visual system, with the objective of inferring the presence of contours in cluttered scenes. The recurrent algorithm of our model makes testable predictions about the temporal dynamics of neuronal populations engaged in contour integration, and it suggests a strong directionality of the underlying functional anatomy. |
doi_str_mv | 10.1371/journal.pcbi.1002520 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313185841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A293812967</galeid><doaj_id>oai_doaj_org_article_ae8ff60fc7b3484baebf24ea5ce3630f</doaj_id><sourcerecordid>A293812967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-ca454563628157c26d0df9840dbe0db3f4b62770d8643ffb5bd79dc18b78ed53</originalsourceid><addsrcrecordid>eNqVUltrFDEUHkSxF_0Hogs-VB92zT2Zl0IpXhaKBe17yHWaZWayJhmx_96sOy1d8UUOIYeT7_vOJadpXkGwgpjDD5s4pVH1q63RYQUBQBSBJ80xpBQvOabi6SP_qDnJeQNAdVv2vDlCiFHCKD5uzq63JQyqD-VuEf3idhrUuDBxLFV9EcbiuqRKiOOL5plXfXYv5_u0ufn08ebyy_Lq-vP68uJqaRjGZWkUoYQyzJCAlBvELLC-FQRY7erBnmiGOAdWMIK911Rb3loDhebCWYpPmzd72W0fs5xbzBLiaoIKAitivUfYqDZym2rx6U5GFeSfQEydVKkE0zupnPCeAW-4xkQQrZz2iDhFjcMMA1-1zudskx6cNW4sSfUHoocvY7iVXfwpMWYAcFIF3s0CKf6YXC5yCNm4vleji1OtG0CBGacQV-jbv6D_7m61R3WqNhBGH2teU826IdRvcT7U-AVqsYCoZbwS3h8Qdl_nfpVOTTnL9fdv_4H9eogle6xJMefk_MNUIJC7_bsvX-72T877V2mvH0_0gXS_cPg39jTWYw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313185841</pqid></control><display><type>article</type><title>Optimality of human contour integration</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Ernst, Udo A ; Mandon, Sunita ; Schinkel-Bielefeld, Nadja ; Neitzel, Simon D ; Kreiter, Andreas K ; Pawelzik, Klaus R</creator><contributor>Sporns, Olaf</contributor><creatorcontrib>Ernst, Udo A ; Mandon, Sunita ; Schinkel-Bielefeld, Nadja ; Neitzel, Simon D ; Kreiter, Andreas K ; Pawelzik, Klaus R ; Sporns, Olaf</creatorcontrib><description>For processing and segmenting visual scenes, the brain is required to combine a multitude of features and sensory channels. It is neither known if these complex tasks involve optimal integration of information, nor according to which objectives computations might be performed. Here, we investigate if optimal inference can explain contour integration in human subjects. We performed experiments where observers detected contours of curvilinearly aligned edge configurations embedded into randomly oriented distractors. The key feature of our framework is to use a generative process for creating the contours, for which it is possible to derive a class of ideal detection models. This allowed us to compare human detection for contours with different statistical properties to the corresponding ideal detection models for the same stimuli. We then subjected the detection models to realistic constraints and required them to reproduce human decisions for every stimulus as well as possible. By independently varying the four model parameters, we identify a single detection model which quantitatively captures all correlations of human decision behaviour for more than 2000 stimuli from 42 contour ensembles with greatly varying statistical properties. This model reveals specific interactions between edges closely matching independent findings from physiology and psychophysics. These interactions imply a statistics of contours for which edge stimuli are indeed optimally integrated by the visual system, with the objective of inferring the presence of contours in cluttered scenes. The recurrent algorithm of our model makes testable predictions about the temporal dynamics of neuronal populations engaged in contour integration, and it suggests a strong directionality of the underlying functional anatomy.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1002520</identifier><identifier>PMID: 22654653</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anatomy & physiology ; Behavior ; Biology ; Computer Simulation ; Experiments ; Form perception ; Form Perception - physiology ; Humans ; Models, Neurological ; Models, Statistical ; Pattern Recognition, Physiological - physiology ; Perceptual Masking - physiology ; Physiological aspects ; Principles ; Psychophysics ; Sensory receptors ; Statistical methods ; Studies</subject><ispartof>PLoS computational biology, 2012-05, Vol.8 (5), p.e1002520-e1002520</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Ernst et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ernst UA, Mandon S, Schinkel-Bielefeld N, Neitzel SD, Kreiter AK, et al. (2012) Optimality of Human Contour Integration. PLoS Comput Biol 8(5): e1002520. doi:10.1371/journal.pcbi.1002520</rights><rights>Ernst et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-ca454563628157c26d0df9840dbe0db3f4b62770d8643ffb5bd79dc18b78ed53</citedby><cites>FETCH-LOGICAL-c633t-ca454563628157c26d0df9840dbe0db3f4b62770d8643ffb5bd79dc18b78ed53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1313185841/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1313185841?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22654653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sporns, Olaf</contributor><creatorcontrib>Ernst, Udo A</creatorcontrib><creatorcontrib>Mandon, Sunita</creatorcontrib><creatorcontrib>Schinkel-Bielefeld, Nadja</creatorcontrib><creatorcontrib>Neitzel, Simon D</creatorcontrib><creatorcontrib>Kreiter, Andreas K</creatorcontrib><creatorcontrib>Pawelzik, Klaus R</creatorcontrib><title>Optimality of human contour integration</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>For processing and segmenting visual scenes, the brain is required to combine a multitude of features and sensory channels. It is neither known if these complex tasks involve optimal integration of information, nor according to which objectives computations might be performed. Here, we investigate if optimal inference can explain contour integration in human subjects. We performed experiments where observers detected contours of curvilinearly aligned edge configurations embedded into randomly oriented distractors. The key feature of our framework is to use a generative process for creating the contours, for which it is possible to derive a class of ideal detection models. This allowed us to compare human detection for contours with different statistical properties to the corresponding ideal detection models for the same stimuli. We then subjected the detection models to realistic constraints and required them to reproduce human decisions for every stimulus as well as possible. By independently varying the four model parameters, we identify a single detection model which quantitatively captures all correlations of human decision behaviour for more than 2000 stimuli from 42 contour ensembles with greatly varying statistical properties. This model reveals specific interactions between edges closely matching independent findings from physiology and psychophysics. These interactions imply a statistics of contours for which edge stimuli are indeed optimally integrated by the visual system, with the objective of inferring the presence of contours in cluttered scenes. The recurrent algorithm of our model makes testable predictions about the temporal dynamics of neuronal populations engaged in contour integration, and it suggests a strong directionality of the underlying functional anatomy.</description><subject>Anatomy & physiology</subject><subject>Behavior</subject><subject>Biology</subject><subject>Computer Simulation</subject><subject>Experiments</subject><subject>Form perception</subject><subject>Form Perception - physiology</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Models, Statistical</subject><subject>Pattern Recognition, Physiological - physiology</subject><subject>Perceptual Masking - physiology</subject><subject>Physiological aspects</subject><subject>Principles</subject><subject>Psychophysics</subject><subject>Sensory receptors</subject><subject>Statistical methods</subject><subject>Studies</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVUltrFDEUHkSxF_0Hogs-VB92zT2Zl0IpXhaKBe17yHWaZWayJhmx_96sOy1d8UUOIYeT7_vOJadpXkGwgpjDD5s4pVH1q63RYQUBQBSBJ80xpBQvOabi6SP_qDnJeQNAdVv2vDlCiFHCKD5uzq63JQyqD-VuEf3idhrUuDBxLFV9EcbiuqRKiOOL5plXfXYv5_u0ufn08ebyy_Lq-vP68uJqaRjGZWkUoYQyzJCAlBvELLC-FQRY7erBnmiGOAdWMIK911Rb3loDhebCWYpPmzd72W0fs5xbzBLiaoIKAitivUfYqDZym2rx6U5GFeSfQEydVKkE0zupnPCeAW-4xkQQrZz2iDhFjcMMA1-1zudskx6cNW4sSfUHoocvY7iVXfwpMWYAcFIF3s0CKf6YXC5yCNm4vleji1OtG0CBGacQV-jbv6D_7m61R3WqNhBGH2teU826IdRvcT7U-AVqsYCoZbwS3h8Qdl_nfpVOTTnL9fdv_4H9eogle6xJMefk_MNUIJC7_bsvX-72T877V2mvH0_0gXS_cPg39jTWYw</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Ernst, Udo A</creator><creator>Mandon, Sunita</creator><creator>Schinkel-Bielefeld, Nadja</creator><creator>Neitzel, Simon D</creator><creator>Kreiter, Andreas K</creator><creator>Pawelzik, Klaus R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120501</creationdate><title>Optimality of human contour integration</title><author>Ernst, Udo A ; Mandon, Sunita ; Schinkel-Bielefeld, Nadja ; Neitzel, Simon D ; Kreiter, Andreas K ; Pawelzik, Klaus R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-ca454563628157c26d0df9840dbe0db3f4b62770d8643ffb5bd79dc18b78ed53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anatomy & physiology</topic><topic>Behavior</topic><topic>Biology</topic><topic>Computer Simulation</topic><topic>Experiments</topic><topic>Form perception</topic><topic>Form Perception - physiology</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Models, Statistical</topic><topic>Pattern Recognition, Physiological - physiology</topic><topic>Perceptual Masking - physiology</topic><topic>Physiological aspects</topic><topic>Principles</topic><topic>Psychophysics</topic><topic>Sensory receptors</topic><topic>Statistical methods</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ernst, Udo A</creatorcontrib><creatorcontrib>Mandon, Sunita</creatorcontrib><creatorcontrib>Schinkel-Bielefeld, Nadja</creatorcontrib><creatorcontrib>Neitzel, Simon D</creatorcontrib><creatorcontrib>Kreiter, Andreas K</creatorcontrib><creatorcontrib>Pawelzik, Klaus R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ernst, Udo A</au><au>Mandon, Sunita</au><au>Schinkel-Bielefeld, Nadja</au><au>Neitzel, Simon D</au><au>Kreiter, Andreas K</au><au>Pawelzik, Klaus R</au><au>Sporns, Olaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimality of human contour integration</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>8</volume><issue>5</issue><spage>e1002520</spage><epage>e1002520</epage><pages>e1002520-e1002520</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>For processing and segmenting visual scenes, the brain is required to combine a multitude of features and sensory channels. It is neither known if these complex tasks involve optimal integration of information, nor according to which objectives computations might be performed. Here, we investigate if optimal inference can explain contour integration in human subjects. We performed experiments where observers detected contours of curvilinearly aligned edge configurations embedded into randomly oriented distractors. The key feature of our framework is to use a generative process for creating the contours, for which it is possible to derive a class of ideal detection models. This allowed us to compare human detection for contours with different statistical properties to the corresponding ideal detection models for the same stimuli. We then subjected the detection models to realistic constraints and required them to reproduce human decisions for every stimulus as well as possible. By independently varying the four model parameters, we identify a single detection model which quantitatively captures all correlations of human decision behaviour for more than 2000 stimuli from 42 contour ensembles with greatly varying statistical properties. This model reveals specific interactions between edges closely matching independent findings from physiology and psychophysics. These interactions imply a statistics of contours for which edge stimuli are indeed optimally integrated by the visual system, with the objective of inferring the presence of contours in cluttered scenes. The recurrent algorithm of our model makes testable predictions about the temporal dynamics of neuronal populations engaged in contour integration, and it suggests a strong directionality of the underlying functional anatomy.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22654653</pmid><doi>10.1371/journal.pcbi.1002520</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2012-05, Vol.8 (5), p.e1002520-e1002520 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1313185841 |
source | PubMed Central (Open Access); Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Anatomy & physiology Behavior Biology Computer Simulation Experiments Form perception Form Perception - physiology Humans Models, Neurological Models, Statistical Pattern Recognition, Physiological - physiology Perceptual Masking - physiology Physiological aspects Principles Psychophysics Sensory receptors Statistical methods Studies |
title | Optimality of human contour integration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimality%20of%20human%20contour%20integration&rft.jtitle=PLoS%20computational%20biology&rft.au=Ernst,%20Udo%20A&rft.date=2012-05-01&rft.volume=8&rft.issue=5&rft.spage=e1002520&rft.epage=e1002520&rft.pages=e1002520-e1002520&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1002520&rft_dat=%3Cgale_plos_%3EA293812967%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c633t-ca454563628157c26d0df9840dbe0db3f4b62770d8643ffb5bd79dc18b78ed53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1313185841&rft_id=info:pmid/22654653&rft_galeid=A293812967&rfr_iscdi=true |