Loading…

Large-scale conformational changes of Trypanosoma cruzi proline racemase predicted by accelerated molecular dynamics simulation

Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a life-threatening illness affecting 11-18 million people. Currently available treatments are limited, with unacceptable efficacy and safety profiles. Recent studies have revealed an essential T. cruzi proline ra...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2011-10, Vol.7 (10), p.e1002178-e1002178
Main Authors: de Oliveira, César Augusto F, Grant, Barry J, Zhou, Michelle, McCammon, J Andrew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c731t-5f240bfffb0bdfb11a336bd2b1b4d50b9b637c8569294b0e637d7c8ef3ebc1ed3
cites cdi_FETCH-LOGICAL-c731t-5f240bfffb0bdfb11a336bd2b1b4d50b9b637c8569294b0e637d7c8ef3ebc1ed3
container_end_page e1002178
container_issue 10
container_start_page e1002178
container_title PLoS computational biology
container_volume 7
creator de Oliveira, César Augusto F
Grant, Barry J
Zhou, Michelle
McCammon, J Andrew
description Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a life-threatening illness affecting 11-18 million people. Currently available treatments are limited, with unacceptable efficacy and safety profiles. Recent studies have revealed an essential T. cruzi proline racemase enzyme (TcPR) as an attractive candidate for improved chemotherapeutic intervention. Conformational changes associated with substrate binding to TcPR are believed to expose critical residues that elicit a host mitogenic B-cell response, a process contributing to parasite persistence and immune system evasion. Characterization of the conformational states of TcPR requires access to long-time-scale motions that are currently inaccessible by standard molecular dynamics simulations. Here we describe advanced accelerated molecular dynamics that extend the effective simulation time and capture large-scale motions of functional relevance. Conservation and fragment mapping analyses identified potential conformational epitopes located in the vicinity of newly identified transient binding pockets. The newly identified open TcPR conformations revealed by this study along with knowledge of the closed to open interconversion mechanism advances our understanding of TcPR function. The results and the strategy adopted in this work constitute an important step toward the rationalization of the molecular basis behind the mitogenic B-cell response of TcPR and provide new insights for future structure-based drug discovery.
doi_str_mv 10.1371/journal.pcbi.1002178
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313186441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A272364281</galeid><doaj_id>oai_doaj_org_article_8e5d3fca2fa44f589ef8d207867ebb7c</doaj_id><sourcerecordid>A272364281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c731t-5f240bfffb0bdfb11a336bd2b1b4d50b9b637c8569294b0e637d7c8ef3ebc1ed3</originalsourceid><addsrcrecordid>eNqVk02L1EAQhoMo7rr6D0QDHtTDjP2Rr7kIy-LHwKCg67mp7q6e7SFJz3Yn4njxr1txZpcdEEH6kK7KU2-Ft1JZ9pSzOZc1f7MJY-yhnW-N9nPOmOB1cy875WUpZ7Usm_t37ifZo5Q2jNF1UT3MToRgQoiCnWa_VhDXOEsGWsxN6F2IHQw-kHJurqBfY8qDyy_jbgt9SKGD3MTxp8-3MbS-xzyCwQ4SUgKtNwPaXO9yMAZbjDCFXWjRjC3E3O566LxJefIdJaY2j7MHDtqETw7Ps-zb-3eXFx9nq88flhfnq5mpJR9mpaOv1c45zbR1mnOQstJWaK4LWzK90JWsTVNWC7EoNEOKLMXoJGrD0cqz7Pled9uGpA7eJcUlnaYqCk7Eck_YABu1jb6DuFMBvPqTCHGtIA7etKgaLK10BoSDonDkKbrGClY3VY1a14a03h66jbpDa7AfIrRHosdven-l1uG7knwhGiZJ4OVBIIbrEdOgOp_I0hZ6DGNSC8aqgpVVTeSrf5KckSBJVpPoiz26pmErT7Om3mbC1bmohawK0Uw-zP9C0bFIsws9Ok_5o4LXRwXEDPhjWMOYklp-_fIf7KdjttizJoaUIrpb_zhT0wrcjFFNK6AOK0Blz-56f1t088_L3-_BBiE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1028080363</pqid></control><display><type>article</type><title>Large-scale conformational changes of Trypanosoma cruzi proline racemase predicted by accelerated molecular dynamics simulation</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>de Oliveira, César Augusto F ; Grant, Barry J ; Zhou, Michelle ; McCammon, J Andrew</creator><contributor>Pande, Vijay S.</contributor><creatorcontrib>de Oliveira, César Augusto F ; Grant, Barry J ; Zhou, Michelle ; McCammon, J Andrew ; Pande, Vijay S.</creatorcontrib><description>Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a life-threatening illness affecting 11-18 million people. Currently available treatments are limited, with unacceptable efficacy and safety profiles. Recent studies have revealed an essential T. cruzi proline racemase enzyme (TcPR) as an attractive candidate for improved chemotherapeutic intervention. Conformational changes associated with substrate binding to TcPR are believed to expose critical residues that elicit a host mitogenic B-cell response, a process contributing to parasite persistence and immune system evasion. Characterization of the conformational states of TcPR requires access to long-time-scale motions that are currently inaccessible by standard molecular dynamics simulations. Here we describe advanced accelerated molecular dynamics that extend the effective simulation time and capture large-scale motions of functional relevance. Conservation and fragment mapping analyses identified potential conformational epitopes located in the vicinity of newly identified transient binding pockets. The newly identified open TcPR conformations revealed by this study along with knowledge of the closed to open interconversion mechanism advances our understanding of TcPR function. The results and the strategy adopted in this work constitute an important step toward the rationalization of the molecular basis behind the mitogenic B-cell response of TcPR and provide new insights for future structure-based drug discovery.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1002178</identifier><identifier>PMID: 22022240</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Isomerases - chemistry ; Animals ; B-Lymphocytes - immunology ; Biology ; Causes of ; Chagas' disease ; Chemistry ; Drug therapy ; Enzymes ; Health aspects ; Immune response ; Infections ; Models, Molecular ; Molecular dynamics ; Molecular Dynamics Simulation ; Parasites ; Parasitic diseases ; Principal Component Analysis ; Protein Conformation ; Protozoan Proteins - chemistry ; Simulation ; Trypanosoma cruzi ; Trypanosoma cruzi - enzymology ; Trypanosoma cruzi - immunology</subject><ispartof>PLoS computational biology, 2011-10, Vol.7 (10), p.e1002178-e1002178</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>de Oliveira et al. 2011</rights><rights>2011 de Oliveira et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: de Oliveira CAF, Grant BJ, Zhou M, McCammon JA (2011) Large-Scale Conformational Changes of Trypanosoma cruzi Proline Racemase Predicted by Accelerated Molecular Dynamics Simulation. PLoS Comput Biol 7(10): e1002178. doi:10.1371/journal.pcbi.1002178</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c731t-5f240bfffb0bdfb11a336bd2b1b4d50b9b637c8569294b0e637d7c8ef3ebc1ed3</citedby><cites>FETCH-LOGICAL-c731t-5f240bfffb0bdfb11a336bd2b1b4d50b9b637c8569294b0e637d7c8ef3ebc1ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192803/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192803/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22022240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Pande, Vijay S.</contributor><creatorcontrib>de Oliveira, César Augusto F</creatorcontrib><creatorcontrib>Grant, Barry J</creatorcontrib><creatorcontrib>Zhou, Michelle</creatorcontrib><creatorcontrib>McCammon, J Andrew</creatorcontrib><title>Large-scale conformational changes of Trypanosoma cruzi proline racemase predicted by accelerated molecular dynamics simulation</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a life-threatening illness affecting 11-18 million people. Currently available treatments are limited, with unacceptable efficacy and safety profiles. Recent studies have revealed an essential T. cruzi proline racemase enzyme (TcPR) as an attractive candidate for improved chemotherapeutic intervention. Conformational changes associated with substrate binding to TcPR are believed to expose critical residues that elicit a host mitogenic B-cell response, a process contributing to parasite persistence and immune system evasion. Characterization of the conformational states of TcPR requires access to long-time-scale motions that are currently inaccessible by standard molecular dynamics simulations. Here we describe advanced accelerated molecular dynamics that extend the effective simulation time and capture large-scale motions of functional relevance. Conservation and fragment mapping analyses identified potential conformational epitopes located in the vicinity of newly identified transient binding pockets. The newly identified open TcPR conformations revealed by this study along with knowledge of the closed to open interconversion mechanism advances our understanding of TcPR function. The results and the strategy adopted in this work constitute an important step toward the rationalization of the molecular basis behind the mitogenic B-cell response of TcPR and provide new insights for future structure-based drug discovery.</description><subject>Amino Acid Isomerases - chemistry</subject><subject>Animals</subject><subject>B-Lymphocytes - immunology</subject><subject>Biology</subject><subject>Causes of</subject><subject>Chagas' disease</subject><subject>Chemistry</subject><subject>Drug therapy</subject><subject>Enzymes</subject><subject>Health aspects</subject><subject>Immune response</subject><subject>Infections</subject><subject>Models, Molecular</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Parasites</subject><subject>Parasitic diseases</subject><subject>Principal Component Analysis</subject><subject>Protein Conformation</subject><subject>Protozoan Proteins - chemistry</subject><subject>Simulation</subject><subject>Trypanosoma cruzi</subject><subject>Trypanosoma cruzi - enzymology</subject><subject>Trypanosoma cruzi - immunology</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVk02L1EAQhoMo7rr6D0QDHtTDjP2Rr7kIy-LHwKCg67mp7q6e7SFJz3Yn4njxr1txZpcdEEH6kK7KU2-Ft1JZ9pSzOZc1f7MJY-yhnW-N9nPOmOB1cy875WUpZ7Usm_t37ifZo5Q2jNF1UT3MToRgQoiCnWa_VhDXOEsGWsxN6F2IHQw-kHJurqBfY8qDyy_jbgt9SKGD3MTxp8-3MbS-xzyCwQ4SUgKtNwPaXO9yMAZbjDCFXWjRjC3E3O566LxJefIdJaY2j7MHDtqETw7Ps-zb-3eXFx9nq88flhfnq5mpJR9mpaOv1c45zbR1mnOQstJWaK4LWzK90JWsTVNWC7EoNEOKLMXoJGrD0cqz7Pled9uGpA7eJcUlnaYqCk7Eck_YABu1jb6DuFMBvPqTCHGtIA7etKgaLK10BoSDonDkKbrGClY3VY1a14a03h66jbpDa7AfIrRHosdven-l1uG7knwhGiZJ4OVBIIbrEdOgOp_I0hZ6DGNSC8aqgpVVTeSrf5KckSBJVpPoiz26pmErT7Om3mbC1bmohawK0Uw-zP9C0bFIsws9Ok_5o4LXRwXEDPhjWMOYklp-_fIf7KdjttizJoaUIrpb_zhT0wrcjFFNK6AOK0Blz-56f1t088_L3-_BBiE</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>de Oliveira, César Augusto F</creator><creator>Grant, Barry J</creator><creator>Zhou, Michelle</creator><creator>McCammon, J Andrew</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111001</creationdate><title>Large-scale conformational changes of Trypanosoma cruzi proline racemase predicted by accelerated molecular dynamics simulation</title><author>de Oliveira, César Augusto F ; Grant, Barry J ; Zhou, Michelle ; McCammon, J Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c731t-5f240bfffb0bdfb11a336bd2b1b4d50b9b637c8569294b0e637d7c8ef3ebc1ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Isomerases - chemistry</topic><topic>Animals</topic><topic>B-Lymphocytes - immunology</topic><topic>Biology</topic><topic>Causes of</topic><topic>Chagas' disease</topic><topic>Chemistry</topic><topic>Drug therapy</topic><topic>Enzymes</topic><topic>Health aspects</topic><topic>Immune response</topic><topic>Infections</topic><topic>Models, Molecular</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Parasites</topic><topic>Parasitic diseases</topic><topic>Principal Component Analysis</topic><topic>Protein Conformation</topic><topic>Protozoan Proteins - chemistry</topic><topic>Simulation</topic><topic>Trypanosoma cruzi</topic><topic>Trypanosoma cruzi - enzymology</topic><topic>Trypanosoma cruzi - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Oliveira, César Augusto F</creatorcontrib><creatorcontrib>Grant, Barry J</creatorcontrib><creatorcontrib>Zhou, Michelle</creatorcontrib><creatorcontrib>McCammon, J Andrew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science (Gale in Context)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Oliveira, César Augusto F</au><au>Grant, Barry J</au><au>Zhou, Michelle</au><au>McCammon, J Andrew</au><au>Pande, Vijay S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale conformational changes of Trypanosoma cruzi proline racemase predicted by accelerated molecular dynamics simulation</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>7</volume><issue>10</issue><spage>e1002178</spage><epage>e1002178</epage><pages>e1002178-e1002178</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a life-threatening illness affecting 11-18 million people. Currently available treatments are limited, with unacceptable efficacy and safety profiles. Recent studies have revealed an essential T. cruzi proline racemase enzyme (TcPR) as an attractive candidate for improved chemotherapeutic intervention. Conformational changes associated with substrate binding to TcPR are believed to expose critical residues that elicit a host mitogenic B-cell response, a process contributing to parasite persistence and immune system evasion. Characterization of the conformational states of TcPR requires access to long-time-scale motions that are currently inaccessible by standard molecular dynamics simulations. Here we describe advanced accelerated molecular dynamics that extend the effective simulation time and capture large-scale motions of functional relevance. Conservation and fragment mapping analyses identified potential conformational epitopes located in the vicinity of newly identified transient binding pockets. The newly identified open TcPR conformations revealed by this study along with knowledge of the closed to open interconversion mechanism advances our understanding of TcPR function. The results and the strategy adopted in this work constitute an important step toward the rationalization of the molecular basis behind the mitogenic B-cell response of TcPR and provide new insights for future structure-based drug discovery.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22022240</pmid><doi>10.1371/journal.pcbi.1002178</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2011-10, Vol.7 (10), p.e1002178-e1002178
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1313186441
source Open Access: PubMed Central; Publicly Available Content (ProQuest)
subjects Amino Acid Isomerases - chemistry
Animals
B-Lymphocytes - immunology
Biology
Causes of
Chagas' disease
Chemistry
Drug therapy
Enzymes
Health aspects
Immune response
Infections
Models, Molecular
Molecular dynamics
Molecular Dynamics Simulation
Parasites
Parasitic diseases
Principal Component Analysis
Protein Conformation
Protozoan Proteins - chemistry
Simulation
Trypanosoma cruzi
Trypanosoma cruzi - enzymology
Trypanosoma cruzi - immunology
title Large-scale conformational changes of Trypanosoma cruzi proline racemase predicted by accelerated molecular dynamics simulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20conformational%20changes%20of%20Trypanosoma%20cruzi%20proline%20racemase%20predicted%20by%20accelerated%20molecular%20dynamics%20simulation&rft.jtitle=PLoS%20computational%20biology&rft.au=de%20Oliveira,%20C%C3%A9sar%20Augusto%20F&rft.date=2011-10-01&rft.volume=7&rft.issue=10&rft.spage=e1002178&rft.epage=e1002178&rft.pages=e1002178-e1002178&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1002178&rft_dat=%3Cgale_plos_%3EA272364281%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c731t-5f240bfffb0bdfb11a336bd2b1b4d50b9b637c8569294b0e637d7c8ef3ebc1ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1028080363&rft_id=info:pmid/22022240&rft_galeid=A272364281&rfr_iscdi=true